Experimental Study on Item-based P-Tree Collaborative Filtering Algorithm for Netflix

[1]  Jun Wang,et al.  Unifying user-based and item-based collaborative filtering approaches by similarity fusion , 2006, SIGIR.

[2]  William Perrizo,et al.  Parameter optimized, vertical, nearest-neighbor-vote and boundary-based classification , 2006, SKDD.

[3]  Yehuda Koren,et al.  Scalable Collaborative Filtering with Jointly Derived Neighborhood Interpolation Weights , 2007, Seventh IEEE International Conference on Data Mining (ICDM 2007).

[4]  Yehuda Koren,et al.  Improved Neighborhood-based Collaborative Filtering , 2007 .

[5]  David Heckerman,et al.  Empirical Analysis of Predictive Algorithms for Collaborative Filtering , 1998, UAI.

[6]  Anne M. Denton,et al.  P-tree classification of yeast gene deletion data , 2002, SKDD.

[7]  George Karypis,et al.  Item-based top-N recommendation algorithms , 2004, TOIS.

[8]  George Hamer,et al.  Vertical Set Square Distance Based Clustering without Prior Knowledge of K , 2005, IASSE.

[9]  Qin Ding,et al.  The P-tree algebra , 2002, SAC '02.

[10]  George Karypis,et al.  Evaluation of Item-Based Top-N Recommendation Algorithms , 2001, CIKM '01.

[11]  Gediminas Adomavicius,et al.  Toward the next generation of recommender systems: a survey of the state-of-the-art and possible extensions , 2005, IEEE Transactions on Knowledge and Data Engineering.

[12]  William Perrizo,et al.  An optimized approach for KNN text categorization using P-trees , 2004, SAC '04.

[13]  Michael J. Pazzani,et al.  Learning Collaborative Information Filters , 1998, ICML.

[14]  John Riedl,et al.  Item-based collaborative filtering recommendation algorithms , 2001, WWW '01.