Integrating spatial configuration into heatmap regression based CNNs for landmark localization

[1]  Dorin Comaniciu,et al.  Multi-Scale Deep Reinforcement Learning for Real-Time 3D-Landmark Detection in CT Scans , 2019, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[2]  Dorin Comaniciu,et al.  Towards intelligent robust detection of anatomical structures in incomplete volumetric data , 2018, Medical Image Anal..

[3]  Loïc Le Folgoc,et al.  Attention U-Net: Learning Where to Look for the Pancreas , 2018, ArXiv.

[4]  Jan S. Kirschke,et al.  Btrfly Net: Vertebrae Labelling with Energy-based Adversarial Learning of Local Spine Prior , 2018, MICCAI.

[5]  Jiebo Luo,et al.  Joint Vertebrae Identification and Localization in Spinal CT Images by Combining Short- and Long-Range Contextual Information , 2018, IEEE Transactions on Medical Imaging.

[6]  Martin Urschler,et al.  Integrating geometric configuration and appearance information into a unified framework for anatomical landmark localization , 2018, Medical Image Anal..

[7]  Horst Bischof,et al.  Multi-label Whole Heart Segmentation Using CNNs and Anatomical Label Configurations , 2017, STACOM@MICCAI.

[8]  Jun Zhang,et al.  Detecting Anatomical Landmarks From Limited Medical Imaging Data Using Two-Stage Task-Oriented Deep Neural Networks , 2017, IEEE Transactions on Image Processing.

[9]  Daguang Xu,et al.  Automatic Vertebra Labeling in Large-Scale 3D CT using Deep Image-to-Image Network with Message Passing and Sparsity Regularization , 2017, IPMI.

[10]  Hao Chen,et al.  Gland segmentation in colon histology images: The glas challenge contest , 2016, Medical Image Anal..

[11]  Martin Urschler,et al.  From Local to Global Random Regression Forests: Exploring Anatomical Landmark Localization , 2016, MICCAI.

[12]  Horst Bischof,et al.  Regressing Heatmaps for Multiple Landmark Localization Using CNNs , 2016, MICCAI.

[13]  Vincent Lepetit,et al.  Automated Age Estimation from Hand MRI Volumes Using Deep Learning , 2016, MICCAI.

[14]  Ching-Wei Wang,et al.  Fully Automatic System for Accurate Localisation and Analysis of Cephalometric Landmarks in Lateral Cephalograms , 2016, Scientific Reports.

[15]  Timothy F. Cootes,et al.  A benchmark for comparison of dental radiography analysis algorithms , 2016, Medical Image Anal..

[16]  Jian Sun,et al.  Deep Residual Learning for Image Recognition , 2015, 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[17]  Guigang Zhang,et al.  Deep Learning , 2016, Int. J. Semantic Comput..

[18]  Hao Chen,et al.  Automatic Localization and Identification of Vertebrae in Spine CT via a Joint Learning Model with Deep Neural Networks , 2015, MICCAI.

[19]  Claudia Lindner,et al.  Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting. , 2015, IEEE transactions on pattern analysis and machine intelligence.

[20]  Andrew Zisserman,et al.  Flowing ConvNets for Human Pose Estimation in Videos , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[21]  Geoffrey E. Hinton,et al.  Deep Learning , 2015, Nature.

[22]  Thomas Brox,et al.  U-Net: Convolutional Networks for Biomedical Image Segmentation , 2015, MICCAI.

[23]  Vibhav Vineet,et al.  Conditional Random Fields as Recurrent Neural Networks , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[24]  Jian Sun,et al.  Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification , 2015, 2015 IEEE International Conference on Computer Vision (ICCV).

[25]  Trevor Darrell,et al.  Fully Convolutional Networks for Semantic Segmentation , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[26]  Michael S. Bernstein,et al.  ImageNet Large Scale Visual Recognition Challenge , 2014, International Journal of Computer Vision.

[27]  Paul A. Bromiley,et al.  Robust and Accurate Shape Model Matching Using Random Forest Regression-Voting , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Horst Bischof,et al.  Towards Automatic Bone Age Estimation from MRI: Localization of 3D Anatomical Landmarks , 2014, MICCAI.

[29]  Jonathan Tompson,et al.  Joint Training of a Convolutional Network and a Graphical Model for Human Pose Estimation , 2014, NIPS.

[30]  Bostjan Likar,et al.  Shape Representation for Efficient Landmark-Based Segmentation in 3-D , 2014, IEEE Transactions on Medical Imaging.

[31]  Christian Szegedy,et al.  DeepPose: Human Pose Estimation via Deep Neural Networks , 2013, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[32]  Michael Brady,et al.  Personalized Graphical Models for Anatomical Landmark Localization in Whole-Body Medical Images , 2014, International Journal of Computer Vision.

[33]  Nitish Srivastava,et al.  Dropout: a simple way to prevent neural networks from overfitting , 2014, J. Mach. Learn. Res..

[34]  Horst Bischof,et al.  Global localization of 3D anatomical structures by pre-filtered Hough Forests and discrete optimization , 2013, Medical Image Anal..

[35]  Antonio Criminisi,et al.  Regression forests for efficient anatomy detection and localization in computed tomography scans , 2013, Medical Image Anal..

[36]  Ben Glocker,et al.  Vertebrae Localization in Pathological Spine CT via Dense Classification from Sparse Annotations , 2013, MICCAI.

[37]  Luca Maria Gambardella,et al.  Mitosis Detection in Breast Cancer Histology Images with Deep Neural Networks , 2013, MICCAI.

[38]  Andrew L. Maas Rectifier Nonlinearities Improve Neural Network Acoustic Models , 2013 .

[39]  Geoffrey E. Hinton,et al.  ImageNet classification with deep convolutional neural networks , 2012, Commun. ACM.

[40]  Ben Glocker,et al.  Automatic Localization and Identification of Vertebrae in Arbitrary Field-of-View CT Scans , 2012, MICCAI.

[41]  Bostjan Likar,et al.  A Game-Theoretic Framework for Landmark-Based Image Segmentation , 2012, IEEE Transactions on Medical Imaging.

[42]  Boštjan Likar,et al.  Parametric modelling and segmentation of vertebral bodies in 3D CT and MR spine images , 2011, Physics in medicine and biology.

[43]  Dorin Comaniciu,et al.  Search strategies for multiple landmark detection by submodular maximization , 2010, 2010 IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[44]  Hans-Peter Meinzer,et al.  Statistical shape models for 3D medical image segmentation: A review , 2009, Medical Image Anal..

[45]  Matthew Toews,et al.  A Statistical Parts-Based Model of Anatomical Variability , 2007, IEEE Transactions on Medical Imaging.

[46]  Horst Bischof,et al.  Automatic Point Landmark Matching for Regularizing Nonlinear Intensity Registration: Application to Thoracic CT Images , 2006, MICCAI.

[47]  Milan Sonka,et al.  Robust active appearance models and their application to medical image analysis , 2005, IEEE Transactions on Medical Imaging.

[48]  Leo Breiman,et al.  Random Forests , 2001, Machine Learning.

[49]  Daniel P. Huttenlocher,et al.  Pictorial Structures for Object Recognition , 2004, International Journal of Computer Vision.

[50]  Gary E. Christensen,et al.  Consistent landmark and intensity-based image registration , 2002, IEEE Transactions on Medical Imaging.

[51]  Yoshua Bengio,et al.  Gradient-based learning applied to document recognition , 1998, Proc. IEEE.

[52]  Timothy F. Cootes,et al.  Active Shape Models-Their Training and Application , 1995, Comput. Vis. Image Underst..

[53]  Y. Nesterov A method for solving the convex programming problem with convergence rate O(1/k^2) , 1983 .