Mixed two‐grid finite difference methods for solving one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations

The aim of this paper is to propose mixed two‐grid finite difference methods to obtain the numerical solution of the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. The finite difference equations at all interior grid points form a large‐sparse linear system, which needs to be solved efficiently. The solution cost of this sparse linear system usually dominates the total cost of solving the discretized partial differential equation. The proposed method is based on applying a family of finite difference methods for discretizing the spatial and time derivatives. The obtained system has been solved by two‐grid method, where the two‐grid method is used for solving the large‐sparse linear systems. Also, in the proposed method, the spectral radius with local Fourier analysis is calculated for different values of h and Δt. The numerical examples show the efficiency of this algorithm for solving the one‐dimensional and two‐dimensional Fitzhugh–Nagumo equations. Copyright © 2016 John Wiley & Sons, Ltd.

[1]  G. M.,et al.  Partial Differential Equations I , 2023, Applied Mathematical Sciences.

[2]  R. FitzHugh Impulses and Physiological States in Theoretical Models of Nerve Membrane. , 1961, Biophysical journal.

[3]  S. Yoshizawa,et al.  An Active Pulse Transmission Line Simulating Nerve Axon , 1962, Proceedings of the IRE.

[4]  R. P. Fedorenko A relaxation method for solving elliptic difference equations , 1962 .

[5]  R. P. Fedorenko The speed of convergence of one iterative process , 1964 .

[6]  N. Bakhvalov On the convergence of a relaxation method with natural constraints on the elliptic operator , 1966 .

[7]  Murli M. Gupta,et al.  A single cell high order scheme for the convection‐diffusion equation with variable coefficients , 1984 .

[8]  Murli M. Gupta,et al.  High-Order Difference Schemes for Two-Dimensional Elliptic Equations , 1985 .

[9]  William L. Briggs,et al.  A multigrid tutorial , 1987 .

[10]  Tuckerman,et al.  Spiral-wave dynamics in a simple model of excitable media: The transition from simple to compound rotation. , 1990, Physical review. A, Atomic, molecular, and optical physics.

[11]  Karma Meandering transition in two-dimensional excitable media. , 1990, Physical review letters.

[12]  J. Pasciak,et al.  Convergence estimates for product iterative methods with applications to domain decomposition , 1991 .

[13]  D. Barkley A model for fast computer simulation of waves in excitable media , 1991 .

[14]  A. Winfree Varieties of spiral wave behavior: An experimentalist's approach to the theory of excitable media. , 1991, Chaos.

[15]  Jinchao Xu,et al.  Convergence estimates for multigrid algorithms without regularity assumptions , 1991 .

[16]  Jinchao Xu,et al.  Iterative Methods by Space Decomposition and Subspace Correction , 1992, SIAM Rev..

[17]  Constantine P. Tzanos,et al.  HIGHER-ORDER DIFFERENCING METHOD WITH A MULTIGRID APPROACH FOR THE SOLUTION OF THE INCOMPRESSIBLE FLOW EQUATIONS AT HIGH REYNOLDS NUMBERS , 1992 .

[18]  W. Hackbusch Iterative Solution of Large Sparse Systems of Equations , 1993 .

[19]  Markus Bär,et al.  Spiral waves in a surface reaction: Model calculations , 1994 .

[20]  J. Tyson What Everyone Should Know About the Belousov-Zhabotinsky Reaction , 1994 .

[21]  W. Spotz High-Order Compact Finite Difference Schemes for Computational Mechanics , 1995 .

[22]  J. Zhangy,et al.  On Convergence and Performance of Iterative Methods with Fourth-Order Compact Schemes , 1996 .

[23]  H. Kreiss,et al.  Time-Dependent Problems and Difference Methods , 1996 .

[24]  Murli M. Gupta,et al.  Comparison of Second- and Fourth-Order Discretizations for Multigrid Poisson Solvers , 1997 .

[25]  Jun Zhang,et al.  Accelerated multigrid high accuracy solution of the convection-diffusion equation with high Reynolds number , 1997 .

[26]  C F Starmer,et al.  Common mechanism links spiral wave meandering and wave-front-obstacle separation , 1997 .

[27]  Murli M. Gupta,et al.  A Compact Multigrid Solver for Convection-Diffusion Equations , 1997 .

[28]  Jun Zhang Fast and High Accuracy Multigrid Solution of the Three Dimensional Poisson Equation , 1998 .

[29]  Dwight Barkley,et al.  Spiral Meandering , 1998 .

[30]  Jun Zhang,et al.  An explicit fourth‐order compact finite difference scheme for three‐dimensional convection–diffusion equation , 1998 .

[31]  V. Krinsky,et al.  Models of defibrillation of cardiac tissue. , 1998, Chaos.

[32]  Hisashi Ninokata,et al.  AN EFFECTIVE, LOCALLY EXACT FINITE-DIFFERENCE SCHEME FOR CONVECTION-DIFFUSION PROBLEMS , 1999 .

[33]  J. S. Shang,et al.  High-Order Compact-Difference Schemes for Time-Dependent Maxwell Equations , 1999 .

[34]  Jun Zhang Preconditioned iterative methods and finite difference schemes for convection-diffusion , 2000, Appl. Math. Comput..

[35]  K. Stuben,et al.  Algebraic Multigrid (AMG) : An Introduction With Applications , 2000 .

[36]  Jun Zhang,et al.  Accuracy, robustness and efficiency comparison in iterative computation of convection diffusion equation with boundary layers , 2000 .

[37]  S. Longhi Spiral waves in optical parametric oscillators , 2001 .

[38]  A Garfinkel,et al.  Coexistence of multiple spiral waves with independent frequencies in a heterogeneous excitable medium. , 2001, Physical review. E, Statistical, nonlinear, and soft matter physics.

[39]  F. Brauer,et al.  Mathematical Models in Population Biology and Epidemiology , 2001 .

[40]  Jun Zhang Multigrid Method and Fourth-Order Compact Scheme for 2D Poisson Equation with Unequal Mesh-Size Discretization , 2002 .

[41]  Hai-wei Sun,et al.  High order compact scheme with multigrid local mesh refinement procedure for convection diffusion problems , 2002 .

[42]  Seongjai Kim,et al.  Compact schemes for acoustics in the frequency domain , 2003 .

[43]  Jun Zhang,et al.  A fourth-order compact difference scheme on face centered cubic grids with multigrid method for solving 2D convection diffusion equation , 2003, Math. Comput. Simul..

[44]  Jun Zhang,et al.  Analysis of stationary iterative methods for the discrete convection-diffusion equation with a 9-point compact scheme , 2003 .

[45]  Stefano Serra Capizzano,et al.  V-cycle Optimal Convergence for Certain (Multilevel) Structured Linear Systems , 2004, SIAM J. Matrix Anal. Appl..

[46]  Long Chen INTRODUCTION TO MULTIGRID METHODS , 2005 .

[47]  Mehdi Dehghan,et al.  Multigrid solution of high order discretisation for three-dimensional biharmonic equation with Dirichlet boundary conditions of second kind , 2006, Appl. Math. Comput..

[48]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[49]  Jianping Zhu,et al.  A fourth‐order compact algorithm for nonlinear reaction‐diffusion equations with Neumann boundary conditions , 2006 .

[50]  Justin W. L. Wan,et al.  Practical Fourier analysis for multigrid methods , 2007, Math. Comput..

[51]  Paola F. Antonietti,et al.  Two-Level Schwarz Preconditioners for Super Penalty Discontinuous Galerkin Methods , 2007 .

[52]  Mehdi Dehghan,et al.  High-order compact boundary value method for the solution of unsteady convection-diffusion problems , 2008, Math. Comput. Simul..

[53]  Bernie D. Shizgal,et al.  Pseudospectral method of solution of the Fitzhugh-Nagumo equation , 2009, Math. Comput. Simul..

[54]  Marco Donatelli,et al.  Multigrid methods for Toeplitz linear systems with different size reduction , 2010, 1010.5730.

[55]  Artem Napov,et al.  Smoothing factor, order of prolongation and actual multigrid convergence , 2011, Numerische Mathematik.

[56]  Cornelis W. Oosterlee,et al.  Local Fourier analysis for multigrid with overlapping smoothers applied to systems of PDEs , 2011, Numer. Linear Algebra Appl..

[57]  Achi Brandt,et al.  Multigrid Techniques: 1984 Guide with Applications to Fluid Dynamics, Revised Edition , 2011 .

[58]  Hamilton-Jacobi Equations,et al.  Multigrid Methods for , 2011 .

[59]  Jianping Wang,et al.  A predictor-corrector compact finite difference scheme for Burgers' equation , 2012, Appl. Math. Comput..

[60]  Luming Zhang,et al.  A compact finite difference scheme for the nonlinear Schrödinger equation with wave operator , 2012, Appl. Math. Comput..

[61]  Chen-liang Li A new parallel cascadic multigrid method , 2013, Appl. Math. Comput..

[62]  Reza Ansari,et al.  A sixth-order compact finite difference method for non-classical vibration analysis of nanobeams including surface stress effects , 2013, Appl. Math. Comput..

[63]  A. Wazwaz,et al.  On soliton solutions for the Fitzhugh–Nagumo equation with time-dependent coefficients , 2013 .

[64]  Frédéric Magoulès,et al.  A hybrid multigrid method for convection-diffusion problems , 2014, J. Comput. Appl. Math..

[65]  Tingchun Wang,et al.  Optimal point-wise error estimate of a compact difference scheme for the Klein–Gordon–Schrödinger equation , 2014 .

[66]  Dhiraj V. Patil,et al.  Multigrid lattice Boltzmann method for accelerated solution of elliptic equations , 2014, J. Comput. Phys..

[67]  J. P. G. Galache,et al.  A sparse mesh for Compact Finite Difference - Fourier solvers with radius-dependent spectral resolution in circular domains , 2014, Comput. Math. Appl..

[68]  Stefan Turek,et al.  Newton multigrid least-squares FEM for the V-V-P formulation of the Navier-Stokes equations , 2014, J. Comput. Phys..

[69]  Mehdi Dehghan,et al.  A multigrid compact finite difference method for solving the one‐dimensional nonlinear sine‐Gordon equation , 2015 .

[70]  Mehdi Dehghan,et al.  A fast and efficient two-grid method for solving d-dimensional poisson equations , 2015, Numerical Algorithms.

[71]  Marco Donatelli,et al.  Generalized grid transfer operators for multigrid methods applied on Toeplitz matrices , 2015 .

[72]  Ludmil T. Zikatanov,et al.  A two-level method for mimetic finite difference discretizations of elliptic problems , 2013, Comput. Math. Appl..

[73]  Hendrik Speleers,et al.  Robust and optimal multi-iterative techniques for IgA Galerkin linear systems , 2015 .