Rare earth doped optical fibers and amplifiers for space applications

Les fibres dopees aux terres rares (REDFs) representent un composant clef dans la fabrication de sources laser et d’amplificateurs optiques (REDFAs). Leurs hautes performances rendent cette technologie particulierement attractive pour les applications spatiales en tant que partie active des gyroscopes a fibres optiques, pour le transfert de donnees et les applications LIDARS. Cependant, la grande sensibilite de ces fibres actives limite l’integration des REDFAs au sein des missions spatiales. De nombreuses etudes ont ete menees pour depasser ces limitations et differentes techniques de mitigation ont ete identifiees telles que le co-dopage au Cerium ou le chargement en hydrogene de ces fibres optiques. Toutes ces solutions interviennent au niveau du composant sensible et sont classees parmi les strategies de durcissement par composant permettant la fabrication de fibres dopees aux terres rares resistantes aux radiations adaptees aux besoins des missions spatiales actuelles associees a de faibles doses d’irradiation. Cependant, l’avenement de nouveaux programmes, de nouvelles missions invitent a considerer des doses d’irradiation plus importantes, necessitant des REDFs et des RDFAs encore plus tolerants aux radiations. A cette fin, une optimisation de l’amplificateur optique au niveau systeme est etudiee dans le cadre de ce doctorat en exploitant une approche couplant simulation et experiences dont les avancees pourront venir en appui des techniques de durcissement plus conventionnelles. Apres la presentation du contexte, des objectifs de ce travail (Chapitre I), les mecanismes fondamentaux de l’amplification et des effets des radiations sont brievement decrits dans le Chapitre II. Les outils de simulation bases sur l’enrichissement d’un code a l’etat de l’art et ses nouvelles fonctionnalites, decrites au Chapitre III, permettent non seulement l’evaluation des performances optiques du REDFA mais aussi de predire leurs evolutions sous irradiation. De nombreuses etudes experimentales ont ete realisees sur differents REDFAs developpes durant la these et presentes dans le chapitre IV, leurs resultats compares a ceux issus de la simulation afin de valider nos outils de simulation. Une fois valide, le code a ete utilise pour montrer comment l’optimisation de l’architecture du REDFA permet de mitiger les effets des radiations sur ses performances (Chapitre V). Finalement, le Chapitre VI presente l’etude de l’implementation dans le code de nouveaux effets, tels que les effets thermiques, le multiplexage du signal d’entree a travers un couplage theorie/experience

[1]  B. Cadier,et al.  Radiation Effects on Ytterbium- and Ytterbium/Erbium-Doped Double-Clad Optical Fibers , 2009, IEEE Transactions on Nuclear Science.

[2]  Youcef Ouerdane,et al.  Optimization of rare-earth-doped amplifiers for space mission through a hardening-by-system strategy , 2017, LASE.

[3]  C. Walsby,et al.  The magnetic properties of oxygen-hole aluminum centres in crystalline SiO2. VI: A stable AlO4/Li centre , 2003 .

[4]  J. M. Watt Numerical Initial Value Problems in Ordinary Differential Equations , 1972 .

[5]  G. N. Greaves,et al.  EXAFS and the structure of glass , 1985 .

[6]  Shibin Jiang,et al.  Numerical analyses of the population dynamics and determination of the upconversion coefficients in a new high erbium-doped tellurite glass , 2001 .

[7]  S. Girard,et al.  Radiation Effects on Silica-Based Optical Fibers: Recent Advances and Future Challenges , 2013, IEEE Transactions on Nuclear Science.

[8]  F.. Prudenzano,et al.  Optimization and Characterization of Rare-Earth-Doped Photonic-Crystal-Fiber Amplifier Using Genetic Algorithm , 2007, Journal of Lightwave Technology.

[9]  E. Simoen,et al.  Radiation Effects in Advanced Semiconductor Materials and Devices , 2002 .

[10]  Blandine Tortech,et al.  Effets des radiations sur des fibres optiques dopées erbium : influence de la composition , 2008 .

[11]  W. H. Lowdermilk,et al.  Multiphonon relaxation of rare-earth ions in oxide glasses , 1977 .

[12]  M. Gaillardin,et al.  Proton Irradiation Response of Hole-Assisted Carbon Coated Erbium-Doped Fiber Amplifiers , 2014, IEEE Transactions on Nuclear Science.

[13]  K. Dybdal,et al.  Detailed theoretical and experimental investigation of high-gain erbium-doped fiber amplifier , 1990, IEEE Photonics Technology Letters.

[14]  Marty R. Shaneyfelt,et al.  Optimum laboratory radiation source for hardness assurance testing , 2001 .

[15]  M. Gaillardin,et al.  Design of Radiation-Hardened Rare-Earth Doped Amplifiers Through a Coupled Experiment/Simulation Approach , 2013, Journal of Lightwave Technology.

[16]  C. Caves Quantum limits on noise in linear amplifiers , 1982 .

[17]  R. A. Fields,et al.  Characterization and control of gamma and proton radiation effects on the performance of Nd:YAG and Nd:YLF lasers , 1995 .

[18]  Jesper Munch,et al.  Mid-infrared fiber lasers at and beyond 3.5 μm using dual-wavelength pumping. , 2014, Optics letters.

[19]  A. Galeckas,et al.  Analysis of the stretched exponential photoluminescence decay from nanometer-sized silicon crystals in SiO2 , 1999 .

[20]  Kent A. Murphy,et al.  Optical fiber sensors , 1995, LEOS '95. IEEE Lasers and Electro-Optics Society 1995 Annual Meeting. 8th Annual Meeting. Conference Proceedings.

[21]  Kelly Simmons-Potter,et al.  Gamma-Radiation-Induced Photodarkening in Unpumped Optical Fibers Doped With Rare-Earth Constituents , 2010, IEEE Transactions on Nuclear Science.

[22]  S. Kannan,et al.  Radiation reliability of rare earth doped optical fibers for laser communication systems (LT) , 1999, MILCOM 1999. IEEE Military Communications. Conference Proceedings (Cat. No.99CH36341).

[23]  Aboul Ella Hassanien,et al.  Swarm Intelligence: Principles, Advances, and Applications , 2015 .

[24]  Y. Rahmat-Samii,et al.  Advances in Particle Swarm Optimization for Antenna Designs: Real-Number, Binary, Single-Objective and Multiobjective Implementations , 2007, IEEE Transactions on Antennas and Propagation.

[25]  S. Verdeyme,et al.  Design Considerations for the Implanted Antennas , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[26]  J. Barth,et al.  Space, atmospheric, and terrestrial radiation environments , 2003 .

[27]  S. Girard,et al.  Radiation hardening techniques for Er/Yb doped optical fibers and amplifiers for space application. , 2012, Optics express.

[28]  R. Holzwarth,et al.  Radiation Induced Absorption in Rare Earth Doped Optical Fibers , 2012, IEEE Transactions on Nuclear Science.

[29]  Youcef Ouerdane,et al.  Radiation-hardened Erbium-doped optical fibers and amplifiers for future high-dose space missions , 2014, Photonics West - Lasers and Applications in Science and Engineering.

[30]  Marty R. Shaneyfelt,et al.  Comparison of charge yield in MOS devices for different radiation sources , 2002 .

[31]  N. Herlofson,et al.  Particle Diffusion in the Radiation Belts , 1962 .

[32]  J. S. Stroud Photoionization of Ce3+ in Glass , 1961 .

[33]  Michael A. Xapsos,et al.  Modeling the Space Radiation Environment , 2006 .

[34]  N. Koumvakalis Defects in crystalline SiO2: optical absorption of the aluminum-associated hole center (A) , 1980 .

[35]  Z. Gu Spectroscopic properties of doped silica glasses , 1982 .

[36]  Andreas Knorr,et al.  Intrinsic homogeneous linewidth and broadening mechanisms of excitons in monolayer transition metal dichalcogenides , 2015, Nature Communications.

[37]  R. Loudon,et al.  Properties of the Optical Quantum Amplifier , 1984 .

[38]  M. Benabdesselam,et al.  Experimental evidence of Er³⁺ ion reduction in the radiation-induced degradation of erbium-doped silica fibers. , 2014, Optics letters.

[39]  Andries Petrus Engelbrecht,et al.  A study of particle swarm optimization particle trajectories , 2006, Inf. Sci..

[40]  S. Girard,et al.  Properties of phosphorus-related defects induced by γ-rays and pulsed X-ray irradiation in germanosilicate optical fibers , 2003 .

[41]  Stephen B. Castor,et al.  RARE EARTH ELEMENTS , 2006 .

[42]  David C. Brown,et al.  Thermal, stress, and thermo-optic effects in high average power double-clad silica fiber lasers , 2001 .

[43]  A. Authier,et al.  Physical properties of crystals , 2007 .

[44]  V. B. Neustruev,et al.  Photoinduced defects in silica glass doped with germanium and cerium , 1991 .

[45]  S. Girard,et al.  Radiation-hard erbium optical fiber and fiber amplifier for both low- and high-dose space missions. , 2014, Optics letters.

[46]  Saman K. Halgamuge,et al.  Self-organizing hierarchical particle swarm optimizer with time-varying acceleration coefficients , 2004, IEEE Transactions on Evolutionary Computation.

[47]  S. Taylor,et al.  The continental crust : its composition and evolution : an examination of the geochemical record preserved in sedimentary rocks , 1985 .

[48]  E. J. Friebele,et al.  Fundamental defect centers in glass: Electron spin resonance and optical absorption studies of irradiated phosphorus‐doped silica glass and optical fibers , 1983 .

[49]  F. Berghmans,et al.  Proton- and Gamma-Induced Effects on Erbium-Doped Optical Fibers , 2007, IEEE Transactions on Nuclear Science.

[50]  G. Raade Rare Earth Minerals. Chemistry, Origin and Ore Deposits , 1996, Mineralogical magazine.

[51]  J. A. Weil A review of electron spin spectroscopy and its application to the study of paramagnetic defects in crystalline quartz , 1984 .

[52]  James Kennedy,et al.  Particle swarm optimization , 2002, Proceedings of ICNN'95 - International Conference on Neural Networks.

[53]  Salman Mohagheghi,et al.  Particle Swarm Optimization: Basic Concepts, Variants and Applications in Power Systems , 2008, IEEE Transactions on Evolutionary Computation.

[54]  G. Fornarelli,et al.  Swarm Intelligence for Electric and Electronic Engineering , 2012 .

[55]  Michel J. F. Digonnet,et al.  Rare earth doped fiber lasers and amplifiers , 1993 .

[56]  D. Boivin,et al.  Radiation-resistant erbium-doped-nanoparticles optical fiber for space applications. , 2012, Optics express.

[57]  John P. Dakin,et al.  Handbook of optoelectronics , 2006 .

[58]  A. Cavaciuti,et al.  Noise measurements in EDFAs , 1994 .

[59]  Jacques Albert,et al.  Effective index drift from molecular hydrogen diffusion in hydrogen-loaded optical fibres and its effect on Bragg grating fabrication , 1994 .

[60]  A. Bjarklev Optical Fiber Amplifiers: Design and System Applications , 1993 .

[61]  Philippe Goldner,et al.  Impact of rare earth element clusters on the excited state lifetime evolution under irradiation in oxide glasses. , 2015, Optics express.

[62]  Yong Gyu Choi,et al.  Comparative study of energy transfers from Er3+ to Ce3+ in tellurite and sulfide glasses under 980 nm excitation , 2000 .

[63]  L. Shampine,et al.  Computer solution of ordinary differential equations : the initial value problem , 1975 .

[64]  G. H. Sigel,et al.  Radiation Resistant Fiber Optic Materials and Waveguides , 1975, IEEE Transactions on Nuclear Science.

[65]  V. Doya,et al.  Experimental study of pump power absorption along rare-earth-doped double clad optical fibres , 2003 .

[66]  O. Gilard,et al.  A model for the prediction of EDFA gain in a space radiation environment , 2004, IEEE Photonics Technology Letters.

[67]  Thomas Buret,et al.  Fibre Optic Gyroscopes for Space Application , 2006 .

[68]  B. Nyman,et al.  Gain and noise in ytterbium-sensitized erbium-doped fiber amplifiers: measurements and simulations , 2001 .

[69]  Benoît Cadier,et al.  Radiation hardening of rare-earth doped fiber amplifiers , 2017, International Conference on Space Optics.

[70]  V. B. Neustruev,et al.  Effects of exposure to photons of various energies on transmission of germanosilicate optical fiber in the visible to near IR spectral range , 1994 .

[71]  R K Tripathi,et al.  Radiation analysis for manned missions to the Jupiter system. , 2004, Advances in space research : the official journal of the Committee on Space Research.

[72]  E. Palik Handbook of Optical Constants of Solids , 1997 .

[73]  V. Ter-mikirtychev,et al.  Fundamentals of Fiber Lasers and Fiber Amplifiers , 2019, Springer Series in Optical Sciences.

[74]  E. J. Friebele,et al.  Radiation protection of fiber optic materials: Effect of cerium doping on the radiation‐induced absorption , 1975 .

[75]  H. Henschel,et al.  Regeneration of irradiated optical fibres by photobleaching? , 1999, 1999 Fifth European Conference on Radiation and Its Effects on Components and Systems. RADECS 99 (Cat. No.99TH8471).

[76]  J. E. Shelby,et al.  Molecular diffusion and solubility of hydrogen isotopes in vitreous silica , 1977 .

[77]  J. A. Aramburu,et al.  The Huang-Rhys factor S(a1g) for transition-metal impurities: a microscopic insight , 1992 .

[78]  Gingerich,et al.  Radiation-induced defects in glasses: Origin of power-law dependence of concentration on dose. , 1993, Physical review letters.

[79]  A. Szász,et al.  Microstructure and its relaxation in FeB amorphous system simulated by moleculular dynamics , 1993 .

[80]  J. E. Shelby,et al.  Radiation effects in hydrogen‐impregnated vitreous silica , 1979 .

[81]  Qiang Zeng,et al.  Hydrogen speciation in hydrogen-loaded, germania-doped silica glass: a combined NMR and FTIR study of the effects of UV irradiation and heat treatment , 1999 .

[82]  K. Simmons-Potter,et al.  Effect of low-earth orbit space on radiation-induced absorption in rare-earth-doped optical fibers , 2013 .

[83]  H. Henschel,et al.  Radiation-induced loss of rare earth doped silica fibres , 1997 .

[84]  Ozge Amutkan SPACE RADIATION ENVIRONMENT AND RADIATION HARDNESS ASSURANCE TESTS OF ELECTRONIC COMPONENTS TO BE USED IN SPACE MISSIONS , 2010 .

[85]  D. Hanna,et al.  Principles of Lasers , 2011 .

[86]  Maurice Clerc,et al.  The particle swarm - explosion, stability, and convergence in a multidimensional complex space , 2002, IEEE Trans. Evol. Comput..

[87]  Michel J. F. Digonnet,et al.  Fundamental limitations of the McCumber relation applied to Er-doped silica and other amorphous-host lasers , 2002 .

[88]  T. Huang,et al.  A hybrid boundary condition for robust particle swarm optimization , 2005, IEEE Antennas and Wireless Propagation Letters.

[89]  Yue Shi,et al.  A modified particle swarm optimizer , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[90]  Roger W. Pryor,et al.  Multiphysics Modeling Using COMSOL®: A First Principles Approach , 2009 .

[91]  E. J. Friebele,et al.  Model for the dose, dose-rate and temperature dependence of radiation-induced loss in optical fibers , 1994 .

[92]  Albert A. Groenwold,et al.  A Study of Global Optimization Using Particle Swarms , 2005, J. Glob. Optim..

[93]  A. L. Tomashuk,et al.  Radiation-Resistant Erbium-Doped Fiber for Spacecraft Applications , 2007, IEEE Transactions on Nuclear Science.

[94]  S. Girard,et al.  Radiation-induced defects in fluorine-doped silica-based optical fibers: Influence of a pre-loading with H2 , 2009 .

[95]  Jiin-Yuh Jang,et al.  A two-dimensional fin efficiency analysis of combined heat and mass transfer in elliptic fins , 2002 .