Ab initio study of the bandgap engineering of Al1−xGaxN for optoelectronic applications

A theoretical study of Al1−xGaxN, based on the full-potential linearized augmented plane wave method, is used to investigate the variations in the bandgap, optical properties, and nonlinear behavior of the compound with the change in the Ga concentration. It is found that the bandgap decreases with the increase in Ga. A maximum value of 5.50 eV is determined for the bandgap of pure AlN, which reaches a minimum value of 3.0 eV when Al is completely replaced by Ga. The static index of refraction and dielectric constant decreases with the increase in the bandgap of the material, assigning a high index of refraction to pure GaN when compared to pure AlN. The refractive index drops below 1 for higher energy photons, larger than 14 eV. The group velocity of these photons is larger than the vacuum velocity of light. This astonishing result shows that at higher energies the optical properties of the material shifts from linear to nonlinear. Furthermore, frequency dependent reflectivity and absorption coefficients...

[1]  M. Maqbool,et al.  Conversion of Direct to Indirect Bandgap and Optical Response of B Substituted InN for Novel Optical Devices Applications , 2010, Journal of Lightwave Technology.

[2]  I. Ahmad,et al.  Theoretical investigation of half metallicity in Fe/Co/Ni doped ZnSe material systems , 2009 .

[3]  S. Kamiyama,et al.  Experimental and theoretical investigations of optical properties of GaN/AlGaN MQW nanostructures. Impact of built-in polarization fields , 2009 .

[4]  A. H. Reshak,et al.  First-principles study of the optical properties of PbFX (X = Cl, Br, I) compounds in its matlockite-type structure , 2007 .

[5]  H. Richardson,et al.  Direct ultraviolet excitation of an amorphous AlN:praseodymium phosphor by codoped Gd3+ cathodoluminescence , 2007 .

[6]  Zhigang Wu,et al.  More accurate generalized gradient approximation for solids , 2005, cond-mat/0508004.

[7]  S. Goumri‐Said,et al.  Ab initio study of structural parameters and gap bowing in zinc-blende AlxGa1−xN and AlxIn1−xN alloys , 2005 .

[8]  A. Stesmans,et al.  Experimental study of the density of states in the band gap of a-Se , 2005 .

[9]  P. Jonnard,et al.  Electronic structure of wurtzite and zinc-blende AlN , 2003, cond-mat/0312245.

[10]  Rongqing Hui,et al.  GaN-based waveguide devices for long-wavelength optical communications , 2003 .

[11]  B. Bouhafs,et al.  Pressure dependence of energy band gaps for AlxGa1 - xN, InxGa1 - xN and InxAl1 - xN , 2002 .

[12]  Hiroshi Harima,et al.  Optical bandgap energy of wurtzite InN , 2002 .

[13]  M. Wanlass,et al.  Defect-related density of states in low-band gap InxGa1−xAs/InAsyP1−y double heterostructures grown on InP substrates , 2002 .

[14]  Anirban Bhattacharyya,et al.  High reflectivity and crack-free AlGaN 'AlN ultraviolet distributed Bragg reflectors , 2002 .

[15]  Eugene E. Haller,et al.  Unusual properties of the fundamental band gap of InN , 2002 .

[16]  G. Ferro,et al.  Structural properties of undoped and doped cubic GaN grown on SiC(001) , 2002 .

[17]  H. Hirayama,et al.  Room-temperature intense 320 nm band ultraviolet emission from quaternary InAlGaN-based multiple-quantum wells , 2002 .

[18]  A. Koizumi,et al.  Er-related luminescence in Er,O-codoped InGaAs/GaAs multiple-quantum-well structures grown by organometallic vapor phase epitaxy , 2002 .

[19]  M. Fox Optical Properties of Solids , 2010 .

[20]  G. Ferro,et al.  Optical Characterization of MBE Grown Zinc-Blende AlGaN , 2001 .

[21]  C. Adelmann,et al.  Self-assembled zinc blende GaN quantum dots grown by molecular-beam epitaxy , 2000 .

[22]  L. J. Wang,et al.  Gain-assisted superluminal light propagation , 2000, Nature.

[23]  Ruggeri,et al.  Observation of superluminal behaviors in wave propagation , 2000, Physical review letters.

[24]  Shun Lien Chuang,et al.  Comparison of zinc-blende and wurtzite GaN semiconductors with spontaneous polarization and piezoelectric field effects , 2000 .

[25]  H. Okumura,et al.  OPTICAL CHARACTERIZATION OF CUBIC ALGAN EPILAYERS BY CATHODOLUMINESCENCE AND SPECTROSCOPIC ELLIPSOMETRY , 1999 .

[26]  J. Muth,et al.  Ordinary and extraordinary refractive indices for AlxGa1−xN epitaxial layers , 1999 .

[27]  Robert M. Biefeld,et al.  The band-gap bowing of AlxGa1−xN alloys , 1999 .

[28]  Y. Arakawa,et al.  Highly reflective GaN/Al0.34Ga0.66N quarter-wave reflectors grown by metal organic chemical vapor deposition , 1998 .

[29]  Theodore D. Moustakas,et al.  Density of states, hybridization, and band-gap evolution in AlxGa1-xN alloys , 1998 .

[30]  S. Chichibu,et al.  Growth of cubic III-nitrides by gas source MBE using atomic nitrogen plasma: GaN, AlGaN and AlN , 1998 .

[31]  D. Bour,et al.  Nitride-based semiconductors for blue and green light-emitting devices , 1997, Nature.

[32]  Shuji Nakamura,et al.  The Blue Laser Diode: GaN based Light Emitters and Lasers , 1997 .

[33]  Tow Chong Chong,et al.  Electronic properties of zinc‐blende GaN, AlN, and their alloys Ga1−xAlxN , 1996 .

[34]  Schwarz,et al.  Applications of Engel and Vosko's generalized gradient approximation in solids. , 1994, Physical review. B, Condensed matter.

[35]  Schwarz,et al.  Generalized-gradient-approximation description of band splittings in transition-metal oxides and fluorides. , 1994, Physical review. B, Condensed matter.

[36]  Khan,et al.  Interband optical properties of Ni3Al. , 1993, Physical review. B, Condensed matter.

[37]  I. Ortenburger,et al.  Band Structure and Reflectivity of GaN , 1974 .

[38]  F. Wooten Chapter 3 – ABSORPTION AND DISPERSION , 1972 .

[39]  D. R. Penn,et al.  Wave-Number-Dependent Dielectric Function of Semiconductors , 1962 .