Lensless light-field imaging with Fresnel zone aperture: quasi-coherent coding.

We propose a new type of lensless camera enabling light-field imaging for focusing after image capture and show its feasibilities with some prototyping. The camera basically consists only of an image sensor and Fresnel zone aperture (FZA). Point sources making up the subjects to be captured cast overlapping shadows of the FZA on the sensor, which result in overlapping straight moiré fringes due to multiplication of another virtual FZA in the computer. The fringes generate a captured image by two-dimensional fast Fourier transform. Refocusing is possible by adjusting the size of the virtual FZA. We found this imaging principle is quite analogous to a coherent hologram. Not only the functions of still cameras but also of video cameras are confirmed experimentally by using the prototyped cameras.