Different Methods of Partitioning the Phase Space of a Dynamic System

In symbolic dynamics, the definition of a symbolic sequence from a continuous times series depends on the use of an appropriate partition of the phase space. In fact, the best way is to estimate a generating partition. However, it is not possible to find generating partitions for most experimental observations because such partitions do not exist when noise is present. In this paper, different partition methods applied to stochastic and chaotic system will be compared in order to choose one which conserves system entropy rate. This partition is called a Markov partition.

[1]  Michael Dellnitz,et al.  Chapter 5 - Set Oriented Numerical Methods for Dynamical Systems , 2002 .

[2]  B. Gaveau,et al.  Theory of nonequilibrium first-order phase transitions for stochastic dynamics , 1998 .

[3]  M. Dellnitz,et al.  A subdivision algorithm for the computation of unstable manifolds and global attractors , 1997 .

[4]  Mohd. Noor Md. Sap Clustering technique in data mining : general and research perspective. , 2002 .

[5]  O. Junge,et al.  The Algorithms Behind GAIO — Set Oriented Numerical Methods for Dynamical Systems , 2001 .

[6]  Christophe Letellier CARACTERISATION TOPOLOGIQUE et RECONSTRUCTION D'ATTRACTEURS ETRANGES , 1994 .

[7]  J. MacQueen Some methods for classification and analysis of multivariate observations , 1967 .

[8]  E. Lorenz Deterministic nonperiodic flow , 1963 .

[9]  Gunter Ochs,et al.  Numerical Approximation of Random Attractors , 1999 .

[10]  Leonard J. Schulman,et al.  Imaging geometry through dynamics: the observable representation , 2006 .

[11]  Harald Atmanspacher,et al.  Mental states as macrostates emerging from brain electrical dynamics. , 2008, Chaos.

[12]  N. Packard,et al.  Symbolic dynamics of noisy chaos , 1983 .

[13]  Abdennaceur Kachouri,et al.  Mapping the dynamic repertoire of the resting brain , 2013, NeuroImage.

[14]  J. Hadamard,et al.  Les surfaces a courbures opposees et leurs lignes geodesique , 1898 .

[15]  Teuvo Kohonen,et al.  Self-organized formation of topologically correct feature maps , 2004, Biological Cybernetics.

[16]  Jean-Philippe Bouchaud,et al.  Numerical study of aD-dimensional periodic Lorentz gas with universal properties , 1985 .

[17]  Asok Ray,et al.  Pattern identification in dynamical systems via symbolic time series analysis , 2007, Pattern Recognit..

[18]  Gabriela Ciuperca,et al.  On the estimation of the entropy rate of finite Markov chains , 2005 .

[19]  J. A. Hartigan,et al.  A k-means clustering algorithm , 1979 .

[20]  S. Ulam A collection of mathematical problems , 1960 .

[21]  Erik M. Bollt,et al.  Review of Chaos Communication by Feedback Control of Symbolic Dynamics , 2003, Int. J. Bifurc. Chaos.

[22]  B. Gaveaua,et al.  Dynamical distance : coarse grains , pattern recognition , and network analysis , 2005 .

[23]  Andrew W. Moore,et al.  Accelerating exact k-means algorithms with geometric reasoning , 1999, KDD '99.