Memory use in insect visual navigation

The navigational strategies that are used by foraging ants and bees to reach a goal are similar to those of birds and mammals. Species from all these groups use path integration and memories of visual landmarks to navigate through familiar terrain. Insects have far fewer neural resources than vertebrates, so data from insects might be useful in revealing the essential components of efficient navigation. Recent work on ants and bees has uncovered a major role for associative links between long-term memories. We emphasize the roles of these associations in the reliable recognition of visual landmarks and the reliable performance of learnt routes. It is unknown whether such associations also provide insects with a map-like representation of familiar terrain. We suggest, however, that landmarks act primarily as signposts that tell insects what particular action they need to perform, rather than telling them where they are.

[1]  R. Wehner,et al.  Visual navigation in insects: coupling of egocentric and geocentric information , 1996, The Journal of experimental biology.

[2]  Rüdiger Wehner,et al.  Honey bees store landmarks in an egocentric frame of reference , 2002, Journal of Comparative Physiology A.

[3]  Thomas S. Collett,et al.  Experiments and Models , 1983 .

[4]  Zhang,et al.  Visually mediated odometry in honeybees , 1997, The Journal of experimental biology.

[5]  Herbert A. Simon,et al.  The Sciences of the Artificial , 1970 .

[6]  G. Roth,et al.  Brain Evolution and Cognition , 2000 .

[7]  N. Strausfeld Atlas of an Insect Brain , 1976, Springer Berlin Heidelberg.

[8]  M. Lindauer Time-compensated sun orientation in bees. , 1960, Cold Spring Harbor symposia on quantitative biology.

[9]  R. Wehner,et al.  Lateral optic flow does not influence distance estimation in the desert ant Cataglyphis fortis. , 2000, The Journal of experimental biology.

[10]  C. G. BUTLER,et al.  The Honeybee , 1942, Nature.

[11]  R. Wehner,et al.  Pinpointing food sources: olfactory and anemotactic orientation in desert ants, Cataglyphis fortis. , 2000, The Journal of experimental biology.

[12]  T. Collett,et al.  The use of visual landmarks by honeybees: Bees weight landmarks according to their distance from the goal , 1987, Journal of Comparative Physiology A.

[13]  M. Lehrer Orientation and Communication in Arthropods , 1997, EXS.

[14]  F. Dyer Bees acquire route-based memories but not cognitive maps in a familiar landscape , 1991, Animal Behaviour.

[15]  R. Menzel,et al.  Do insects have cognitive maps? , 1990, Annual review of neuroscience.

[16]  L. Chittka,et al.  The influences of landmarks on distance estimation of honey bees , 1995, Animal Behaviour.

[17]  Thomas S. Collett,et al.  Rapid Navigational Learning in Insects with a Short Lifespan , 1998, Connect. Sci..

[18]  John B. Shoven,et al.  I , Edinburgh Medical and Surgical Journal.

[19]  Hanspeter A. Mallot,et al.  Biomimetic robot navigation , 2000, Robotics Auton. Syst..

[20]  T. S. Collett,et al.  The retrieval of visuo-spatial memories by honeybees , 2004, Journal of Comparative Physiology A.

[21]  W. Junger Waterstriders (Gerris paludum F.) compensate for drift with a discontinuously working visual position servo , 1991, Journal of Comparative Physiology A.

[22]  F. Dyer,et al.  Development of sun compensation by honeybees: how partially experienced bees estimate the sun's course. , 1994, Proceedings of the National Academy of Sciences of the United States of America.

[23]  R. Menzel,et al.  Bees travel novel homeward routes by integrating separately acquired vector memories , 1998, Animal Behaviour.

[24]  M V Srinivasan,et al.  Honeybee navigation: nature and calibration of the "odometer". , 2000, Science.

[25]  Brackenbury Targetting and optomotor space in the leaf-hopper Empoasca vitis (Gothe) (Hemiptera: Cicadellidae) , 1996, The Journal of experimental biology.

[26]  Rudolf Brun Die raumorientierung der ameisen und das orientierungsproblem im allgemeinen. Eine kritisch-experimentelle studie; zugleich ein beitrag zur theorie der mneme. Von Rudolf Brun. , 1914 .

[27]  T. S. Collett,et al.  Landmark learning in bees , 1983, Journal of comparative physiology.

[28]  D. Robert,et al.  Tracking of flying insects using pan-tilt cameras , 2000, Journal of Neuroscience Methods.

[29]  R. Menzel,et al.  Cognitive architecture of a mini-brain: the honeybee , 2001, Trends in Cognitive Sciences.

[30]  F. Dyer,et al.  Honey bee spatial memory: use of route-based memories after displacement , 1993, Animal Behaviour.

[31]  Paul Graham,et al.  View-based navigation in insects: how wood ants (Formica rufa L.) look at and are guided by extended landmarks. , 2002, The Journal of experimental biology.

[32]  Shoucheng Ouyang,et al.  18. Review and prospects , 1998 .

[33]  S. W. Zhang,et al.  Honeybees link sights to smells , 1998, Nature.

[34]  F. Dyer,et al.  The role of orientation flights on homing performance in honeybees. , 1999, The Journal of experimental biology.

[35]  T. Collett,et al.  Calibration of vector navigation in desert ants , 1999, Current Biology.

[36]  M. Heisenberg,et al.  The memory template in Drosophila pattern vision at the flight simulator , 1999, Vision Research.

[37]  T. S. Collett,et al.  Landmark maps for honeybees , 1987, Biological Cybernetics.

[38]  T. S. Collett,et al.  Learnt sensori-motor mappings in honeybees: interpolation and its possible relevance to navigation , 1995, Journal of Comparative Physiology A.

[39]  M. V SRINIVASAN,et al.  Honeybee navigation: odometry with monocular input , 1998, Animal Behaviour.

[40]  R Möller,et al.  Do insects use templates or parameters for landmark navigation? , 2001, Journal of theoretical biology.

[41]  M. Srinivasan,et al.  Maze Learning by Honeybees , 1996, Neurobiology of Learning and Memory.

[42]  Hateren,et al.  Blowfly flight and optic flow. I. Thorax kinematics and flight dynamics , 1999, The Journal of experimental biology.

[43]  M. Walker,et al.  Magnetic orientation and the magnetic sense in arthropods. , 1997, EXS.

[44]  R Wehner,et al.  Egocentric information helps desert ants to navigate around familiar obstacles. , 2001, The Journal of experimental biology.

[45]  R. Menzel,et al.  Symmetry perception in an insect , 1996, Nature.

[46]  Paul Schmid-Hempel,et al.  Individually different foraging methods in the desert ant Cataglyphis bicolor (Hymenoptera, Formicidae) , 1984, Behavioral Ecology and Sociobiology.

[47]  Rüdiger Wehner,et al.  The visual centring response in desert ants, Cataglyphis fortis. , 2002, The Journal of experimental biology.

[48]  T. Collett,et al.  Multiple stored views and landmark guidance in ants , 1998, Nature.

[49]  M. V. Srinivasan,et al.  Honeybee Memory: Navigation by Associative Grouping and Recall of Visual Stimuli , 1999, Neurobiology of Learning and Memory.

[50]  Lars Chittka,et al.  Dominance of Celestial Cues over Landmarks Disproves Map-Like Orientation in Honey Bees , 1990 .

[51]  M. Srinivasan,et al.  Motion cues provide the bee's visual world with a third dimension , 1988, Nature.

[52]  Bernhard Schölkopf,et al.  View-Based Cognitive Mapping and Path Planning , 1995, Adapt. Behav..

[53]  T. S. Collett,et al.  Honeybees learn the colours of landmarks , 2004, Journal of Comparative Physiology A.

[54]  J. Zeil,et al.  Structure and function of learning flights in bees and wasps , 1996 .

[55]  George Adrian Horridge,et al.  The honeybee (Apis mellifera) detects bilateral symmetry and discriminates its axis , 1996 .

[56]  Ralf Möller,et al.  Insect visual homing strategies in a robot with analog processing , 2000, Biological Cybernetics.

[57]  S. Wehner,et al.  Insect navigation: use of maps or Ariadne's thread ? , 1990 .

[58]  M. Srinivasan,et al.  Visual Discrimination of Pattern Orientation by Honeybees: Performance and Implications for `Cortical' Processing , 1994 .

[59]  J. L. Gould Honey bees store learned flower-landing behaviour according to time of day , 1987, Animal Behaviour.

[60]  T. S. Collett,et al.  Places and patterns — a study of context learning in honeybees , 1997, Journal of Comparative Physiology A.

[61]  永福 智志 The Organization of Learning , 2005, Journal of Cognitive Neuroscience.

[62]  J. Cronly-Dillon,et al.  Vision and visual dysfunction. , 1994, Journal of cognitive neuroscience.

[63]  Bernhard Schölkopf,et al.  Where did I take that snapshot? Scene-based homing by image matching , 1998, Biological Cybernetics.

[64]  T. Maddess,et al.  Orientation-sensitive Neurons in the Brain of the Honey Bee (Apis mellifera). , 1997, Journal of insect physiology.

[65]  T. Collett,et al.  Looking and learning: a spatial pattern in the orientation flight of the wasp Vespula vulgaris , 1993, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[66]  J. Zeil Orientation flights of solitary wasps (Cerceris; Sphecidae; Hymenoptera) , 1993, Journal of Comparative Physiology A.

[67]  T. S. Collett,et al.  How desert ants cope with enforced detours on their way home , 1992, Journal of Comparative Physiology A.

[68]  Mandyam V. Srinivasan,et al.  Pattern recognition in honeybees: local and global analysis , 1992, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[69]  T. S. Collett,et al.  View-based navigation in Hymenoptera: multiple strategies of landmark guidance in the approach to a feeder , 1997, Journal of Comparative Physiology A.

[70]  Rüdiger Wehner,et al.  What do the ants know about the rotation of the sky? , 1981, Nature.

[71]  M. Srinivasan,et al.  Range perception through apparent image speed in freely flying honeybees , 1991, Visual Neuroscience.

[72]  Hanspeter A. Mallot,et al.  Navigation and Acquisition of Spatial Knowledge in a Virtual Maze , 1998, Journal of Cognitive Neuroscience.

[73]  T. Collett,et al.  The guidance of desert ants by extended landmarks. , 2001, The Journal of experimental biology.

[74]  Collett,et al.  Magnetic compass cues and visual pattern learning in honeybees , 1996, The Journal of experimental biology.

[75]  D. Janzen Euglossine Bees as Long-Distance Pollinators of Tropical Plants , 1971, Science.

[76]  Randolf Menzel,et al.  Discrimination of coloured stimuli by honeybees: alternative use of achromatic and chromatic signals , 1997, Journal of Comparative Physiology A.

[77]  Nigel R. Franks,et al.  The Use of Edges in Visual Navigation by the Ant Leptothorax albipennis , 2001 .

[78]  Zhang,et al.  Honeybee navigation en route to the goal: visual flight control and odometry , 1996, The Journal of experimental biology.

[79]  T. S. Collett,et al.  Biological compasses and the coordinate frame of landmark memories in honeybees , 1994, Nature.

[80]  T. Collett,et al.  Visual landmarks and route following in desert ants , 1992, Journal of Comparative Physiology A.

[81]  R. Pfeifer,et al.  A mobile robot employing insect strategies for navigation , 2000, Robotics Auton. Syst..

[82]  N. Tinbergen,et al.  Über die Orientierung des Bienenwolfes (Philanthus triangulum Fabr.) , 2004, Zeitschrift für vergleichende Physiologie.

[83]  D. R. Reynolds,et al.  Tracking bees with harmonic radar , 1996, Nature.

[84]  Don R. Reynolds,et al.  A landscape‐scale study of bumble bee foraging range and constancy, using harmonic radar , 1999 .

[85]  J. L. Gould The Locale Map of Honey Bees: Do Insects Have Cognitive Maps? , 1986, Science.

[86]  Thomas S Collett,et al.  The use of landmarks and panoramic context in the performance of local vectors by navigating honeybees. , 2002, The Journal of experimental biology.

[87]  Collett,et al.  Learning walks and landmark guidance in wood ants (Formica rufa) , 1999, The Journal of experimental biology.

[88]  R. Menzel,et al.  Two spatial memories for honeybee navigation , 2000, Proceedings of the Royal Society of London. Series B: Biological Sciences.

[89]  S. N. Fry,et al.  Sequence learning by honeybees , 1993, Journal of Comparative Physiology A.

[90]  M. Lehrer Why do bees turn back and look? , 1993, Journal of Comparative Physiology A.

[91]  Michael D. Breed,et al.  Effects of experience on use of orientation cues in the giant tropical ant , 1989, Animal Behaviour.

[92]  Esch,et al.  Distance estimation by foraging honeybees , 1996, The Journal of experimental biology.

[93]  B. Schnetter,et al.  Experiments on Pattern Discrimination in Honey Bees , 1972 .

[94]  M. Giurfa,et al.  Vectors, routes and maps: new discoveries about navigation in insects , 1999, Trends in Neurosciences.

[95]  R. Morse The Dance Language and Orientation of Bees , 1994 .

[96]  S. W. Zhang,et al.  Error is proportional to distance measured by honeybees: Weber’s law in the odometer , 1999, Animal Cognition.

[97]  Ken Cheng,et al.  Honeybees (Apis mellifera) Remember Two Near-Target Landmark Constellations , 1998 .

[98]  W. T. Catton Information processing in the visual systems of arthropods , 1974 .

[99]  Thomas S. Collett,et al.  How do insects use path integration for their navigation? , 2000, Biological Cybernetics.

[100]  T. S. Collett,et al.  On the encoding of movement vectors by honeybees. Are distance and direction represented independently? , 1996, Journal of Comparative Physiology A.

[101]  Ken Cheng,et al.  How honeybees find a place: Lessons from a simple mind , 2000 .

[102]  F. Newell Information Processing in the Visual Systems of Arthropods , 1973 .

[103]  G. P. Baerends Fortpflanzungsverhalten und Orientierung der Grabwespe Ammophila campestris Jur , 1941 .

[104]  T. Collett,et al.  Local and global vectors in desert ant navigation , 1998, Nature.

[105]  Jean-Arcady Meyer,et al.  BIOLOGICALLY BASED ARTIFICIAL NAVIGATION SYSTEMS: REVIEW AND PROSPECTS , 1997, Progress in Neurobiology.

[106]  Bernhard Ronacher,et al.  How do bees learn and recognize visual patterns? , 1998, Biological Cybernetics.