Efficient and reliable methods for direct parameterized image registration

This thesis examines methods for efficient and reliable image registration in the context of computer vision and medical imaging. Direct, parameterized image registration approaches work by minimizing a difference measure between a fixed reference image, and the image warped to match it. The calculation of this difference measure is the most computationally intensive part of the process and for faster registration it either has to be calculated faster, or calculated fewer times. Both possibilities are addressed in detail. Efficiency and reliability are addressed in four ways (1) Methods are presented for generalizing the Gauss-Newton Hessian approximation to the non-least squares case, and for the optimal selection of scaling factors for the transformation parameters. Both of these enhance performance by enabling optimization algorithms to perform fewer evaluations of the difference measure. The performance of a wide range of optimization algorithms is analyzed both theoretically and experimentally, and guidelines are presented for optimizer selection based on the characteristics of the registration problem. (2) Using only a portion of the available pixels results in faster calculation but suffers from a potential loss of accuracy. An algorithm is presented which applies formal deliberation control methods to managing this tradeoff. By managing the amount of image data used at every evaluation of the cost function, the algorithm adapts to the nature of the images and the stage of the optimization. This adaptive approach allows greater efficiency without sacrificing reliability. (3) It is shown that the scale used to compute the derivative is a critical factor to consider when selecting subsets of pixels for registration, that has largely been ignored in previous work. Finally, (4) two existing efficient registration approaches, the inverse compositional, and efficient second order algorithms, rely on specialized optimizer update steps and specialized parameterizations. A generalization of these methods is presented that both identifies the connections between them, and eliminates the need for these specialized components. Throughout the thesis, application specific approaches have been avoided. Both 2D and 3D images from both computer vision and medical imaging applications have been used throughout. Consequently each of the efficient registration methods can be applied, alone or in combination, to a very wide range of problems.

[1]  J. Dennis,et al.  Sizing and least-change secant methods , 1993 .

[2]  Lisa M. Brown,et al.  A survey of image registration techniques , 1992, CSUR.

[3]  Otmar Scherzer,et al.  Mathematical models for registration and applications to medical imaging , 2006 .

[4]  John A. Nelder,et al.  A Simplex Method for Function Minimization , 1965, Comput. J..

[5]  Richard Bowden,et al.  A Unifying Framework for Mutual Information Methods for Use in Non-linear Optimisation , 2006, ECCV.

[6]  Richard Barrett,et al.  Templates for the Solution of Linear Systems: Building Blocks for Iterative Methods , 1994, Other Titles in Applied Mathematics.

[7]  Doina Precup,et al.  Fast Image Alignment Using Anytime Algorithms , 2007, IJCAI.

[8]  Akram Aldroubi,et al.  B-SPLINE SIGNAL PROCESSING: PART I-THEORY , 1993 .

[9]  Nikos A. Vlassis,et al.  Anytime algorithms for multiagent decision making using coordination graphs , 2004, 2004 IEEE International Conference on Systems, Man and Cybernetics (IEEE Cat. No.04CH37583).

[10]  P. Venkataraman,et al.  Applied Optimization with MATLAB Programming , 2001 .

[11]  Tal Arbel,et al.  The importance of scale when selecting pixels for image registration , 2007, Fourth Canadian Conference on Computer and Robot Vision (CRV '07).

[12]  J. Leese,et al.  An Automated Technique for Obtaining Cloud Motion from Geosynchronous Satellite Data Using Cross Correlation , 1971 .

[13]  Colin Studholme,et al.  Nonrigid image registration: guest editors' introduction , 2003, Comput. Vis. Image Underst..

[14]  Andrew Zisserman,et al.  Direct Estimation of Non-Rigid Registrations , 2004 .

[15]  Philip E. Gill,et al.  Practical optimization , 1981 .

[16]  D. Hill,et al.  Non-rigid image registration: theory and practice. , 2004, The British journal of radiology.

[17]  K. I. M. McKinnon,et al.  Convergence of the Nelder-Mead Simplex Method to a Nonstationary Point , 1998, SIAM J. Optim..

[18]  Wilfried Enkelmann,et al.  Investigations of multigrid algorithms for the estimation of optical flow fields in image sequences , 1988, Comput. Vis. Graph. Image Process..

[19]  D. Burr A dynamic model for image registration , 1981 .

[20]  Jan Modersitzki,et al.  Numerical Methods for Image Registration , 2004 .

[21]  J. Mazziotta,et al.  MRI‐PET Registration with Automated Algorithm , 1993, Journal of computer assisted tomography.

[22]  Heinrich Niemann,et al.  A parallel any-time control algorithm for image understanding , 1996, Proceedings of 13th International Conference on Pattern Recognition.

[23]  R. N. Desmarais,et al.  Interpolation using surface splines. , 1972 .

[24]  Andrew J. Hanson,et al.  Visualizing quaternions , 2005, SIGGRAPH Courses.

[25]  Harvey F. Silverman,et al.  A Class of Algorithms for Fast Digital Image Registration , 1972, IEEE Transactions on Computers.

[26]  Max A. Viergever,et al.  Mutual information matching in multiresolution contexts , 2001, Image Vis. Comput..

[27]  Vincent Gay-Bellile,et al.  Direct Estimation of Nonrigid Registrations with Image-Based Self-Occlusion Reasoning , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Richard Szeliski,et al.  Spline-Based Image Registration , 1997, International Journal of Computer Vision.

[29]  Tal Arbel,et al.  Generalizing inverse compositional image alignment , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[30]  R. Fletcher,et al.  A New Approach to Variable Metric Algorithms , 1970, Comput. J..

[31]  G LoweDavid,et al.  Distinctive Image Features from Scale-Invariant Keypoints , 2004 .

[32]  Robert C. Bolles,et al.  Parametric Correspondence and Chamfer Matching: Two New Techniques for Image Matching , 1977, IJCAI.

[33]  Paul Suetens,et al.  Nonrigid Image Registration Using Free-Form Deformations with a Local Rigidity Constraint , 2004, MICCAI.

[34]  Gregory D. Hager,et al.  Efficient Region Tracking With Parametric Models of Geometry and Illumination , 1998, IEEE Trans. Pattern Anal. Mach. Intell..

[35]  Hervé Delingette,et al.  Robust nonrigid registration to capture brain shift from intraoperative MRI , 2005, IEEE Transactions on Medical Imaging.

[36]  Michael Unser,et al.  Fast parametric elastic image registration , 2003, IEEE Trans. Image Process..

[37]  Jacqueline Le Moigne,et al.  Multiresolution registration of remote sensing imagery by optimization of mutual information using a stochastic gradient , 2003, IEEE Trans. Image Process..

[38]  Michal Irani,et al.  All About Direct Methods , 1999 .

[39]  Torsten Rohlfing,et al.  Nonrigid image registration in shared-memory multiprocessor environments with application to brains, breasts, and bees , 2003, IEEE Transactions on Information Technology in Biomedicine.

[40]  Federico Tombari,et al.  An Algorithm for Efficient and Exhaustive Template Matching , 2004, ICIAR.

[41]  Alejandro F Frangi,et al.  Automatic construction of 3-D statistical deformation models of the brain using nonrigid registration , 2003, IEEE Transactions on Medical Imaging.

[42]  Bart M. ter Haar Romeny,et al.  Front-End Vision and Multi-Scale Image Analysis , 2003, Computational Imaging and Vision.

[43]  P. E. Anuta,et al.  Spatial Registration of Multispectral and Multitemporal Digital Imagery Using Fast Fourier Transform Techniques , 1970 .

[44]  Terry M. Peters,et al.  High-performance medical image registration using new optimization techniques , 2006, IEEE Transactions on Information Technology in Biomedicine.

[45]  Torsten Rohlfing,et al.  Volume-preserving nonrigid registration of MR breast images using free-form deformation with an incompressibility constraint , 2003, IEEE Transactions on Medical Imaging.

[46]  Jorge Nocedal,et al.  A Limited Memory Algorithm for Bound Constrained Optimization , 1995, SIAM J. Sci. Comput..

[47]  A. E. Brain,et al.  Use of a Pattern Recognition Technique for Determining Cloud Motions from Sequences of Satellite Photographs , 1971 .

[48]  Olivier Salvado,et al.  Removal of local and biased global maxima in intensity-based registration , 2007, Medical Image Anal..

[49]  Adrien Bartoli,et al.  Generalized Thin-Plate Spline Warps , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  K. Rohr,et al.  Thin-plate spline approximation for image registration , 1996, Proceedings of 18th Annual International Conference of the IEEE Engineering in Medicine and Biology Society.

[51]  Guy Marchal,et al.  3D Multi-Modality Medical Image Registration Using Feature Space Clustering , 1995, CVRMed.

[52]  Doina Precup,et al.  Anytime similarity measures for faster alignment , 2008, Comput. Vis. Image Underst..

[53]  D K Smith,et al.  Numerical Optimization , 2001, J. Oper. Res. Soc..

[54]  Michael Unser,et al.  Optimization of mutual information for multiresolution image registration , 2000, IEEE Trans. Image Process..

[55]  A. Khotanzad,et al.  A physics-based coordinate transformation for 3-D image matching , 1997, IEEE Transactions on Medical Imaging.

[56]  Max A. Viergever,et al.  Interpolation Artefacts in Mutual Information-Based Image Registration , 2000, Comput. Vis. Image Underst..

[57]  Tuomas Sandholm,et al.  Using Performance Profile Trees to Improve Deliberation Control , 2004, AAAI.

[58]  Paul Suetens,et al.  Comparative evaluation of multiresolution optimization strategies for multimodality image registration by maximization of mutual information , 1999, Medical Image Anal..

[59]  M. Zanca,et al.  A comparative study of Powell's and Downhill Simplex algorithms for a fast multimodal surface matching in brain imaging. , 2001, Computerized medical imaging and graphics : the official journal of the Computerized Medical Imaging Society.

[60]  Simon Baker,et al.  Equivalence and efficiency of image alignment algorithms , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[61]  Paul M. Thompson,et al.  The role of image registration in brain mapping , 2001, Image Vis. Comput..

[62]  Fred L. Bookstein,et al.  Principal Warps: Thin-Plate Splines and the Decomposition of Deformations , 1989, IEEE Trans. Pattern Anal. Mach. Intell..

[63]  Heinz-Otto Peitgen,et al.  GPU Accelerated Image Registration in Two and Three Dimensions , 2006, Bildverarbeitung für die Medizin.

[64]  John K. Tsotsos,et al.  A Novel Algorithm for Fitting 3-D Active Appearance Models: Applications to Cardiac MRI Segmentation , 2005, SCIA.

[65]  L. Pousek,et al.  Biomedical volume alignment using an efficient optimization method and fast data resampling , 2003, Proceedings of the 3rd IEEE International Symposium on Signal Processing and Information Technology (IEEE Cat. No.03EX795).

[66]  C. G. Broyden The Convergence of a Class of Double-rank Minimization Algorithms 2. The New Algorithm , 1970 .

[67]  Josien P. W. Pluim,et al.  Evaluation of Optimization Methods for Nonrigid Medical Image Registration Using Mutual Information and B-Splines , 2007, IEEE Transactions on Image Processing.

[68]  Peter Corke,et al.  Visual Control of Robots: High-Performance Visual Servoing , 1996 .

[69]  Daisuke Fujiwara,et al.  Scheduling of Image Processing Using Anytime Algorithm for Real-time System , 2006, 18th International Conference on Pattern Recognition (ICPR'06).

[70]  Richard Bowden,et al.  Mutual Information for Lucas-Kanade Tracking (MILK): An Inverse Compositional Formulation , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[71]  Thomas M. Cover,et al.  Elements of Information Theory , 2005 .

[72]  S. Baker,et al.  Lucas-Kanade 20 Years On: Part 5 , 2004 .

[73]  Tal Arbel,et al.  Piecewise affine initialized spline-based patient-specific registration of a high-resolution ear model for surgical guidance , 2009 .

[74]  Frank P. Ferrie,et al.  Autonomous exploration: driven by uncertainty , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[75]  A. Baker Matrix Groups: An Introduction to Lie Group Theory , 2003 .

[76]  Daniel Rueckert,et al.  Similarity Metrics for Groupwise Non-rigid Registration , 2007, MICCAI.

[77]  Selim Benhimane,et al.  Real-time image-based tracking of planes using efficient second-order minimization , 2004, 2004 IEEE/RSJ International Conference on Intelligent Robots and Systems (IROS) (IEEE Cat. No.04CH37566).

[78]  A. Evans,et al.  MRI simulation-based evaluation of image-processing and classification methods , 1999, IEEE Transactions on Medical Imaging.

[79]  Paul Suetens,et al.  Efficient GPU-accelerated elastic image registration , 2008 .

[80]  Adrien Bartoli,et al.  Groupwise Geometric and Photometric Direct Image Registration , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[81]  Shlomo Zilberstein,et al.  Monitoring and control of anytime algorithms: A dynamic programming approach , 2001, Artif. Intell..

[82]  Joachim Dengler,et al.  Local motion estimation with the dynamic pyramid , 1986 .

[83]  José Miguel Buenaposada,et al.  Speeding up SSD planar tracking by pixel selection , 2002, Proceedings. International Conference on Image Processing.

[84]  Nicholas Ayache,et al.  Iconic feature based nonrigid registration: the PASHA algorithm , 2003, Comput. Vis. Image Underst..

[85]  A. Rosenfeld,et al.  Ordered search techniques in template matching , 1972 .

[86]  Nicholas Ayache,et al.  Towards a Better Comprehension of Similarity Measures Used in Medical Image Registration , 1999, MICCAI.

[87]  Terry M. Peters,et al.  High performance derivative-free optimization applied to biomedical image registration , 2005, 19th International Symposium on High Performance Computing Systems and Applications (HPCS'05).

[88]  Richard Szeliski,et al.  Creating full view panoramic image mosaics and environment maps , 1997, SIGGRAPH.

[89]  Yann LeCun,et al.  Transformation invariance in pattern recognition: Tangent distance and propagation , 2000, Int. J. Imaging Syst. Technol..

[90]  David G. Lowe,et al.  Object recognition from local scale-invariant features , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[91]  S. Sitharama Iyengar,et al.  Efficient Global Optimization for Image Registration , 2002, IEEE Trans. Knowl. Data Eng..

[92]  Josien P. W. Pluim,et al.  A Comparison of Acceleration Techniques for Nonrigid Medical Image Registration , 2006, WBIR.

[93]  Josef Weidendorfer,et al.  A Tool Suite for Simulation Based Analysis of Memory Access Behavior , 2004, International Conference on Computational Science.

[94]  P. P. Chakrabarti,et al.  An Automated Meta-Level Control Framework for Optimizing the Quality–Time Tradeoff of VLSI Algorithms , 2007, IEEE Transactions on Computer-Aided Design of Integrated Circuits and Systems.

[95]  David R. Haynor,et al.  PET-CT image registration in the chest using free-form deformations , 2003, IEEE Transactions on Medical Imaging.

[96]  A. Ardeshir Goshtasby,et al.  Piecewise cubic mapping functions for image registration , 1987, Pattern Recognit..

[97]  Cleve B. Moler,et al.  Nineteen Dubious Ways to Compute the Exponential of a Matrix, Twenty-Five Years Later , 1978, SIAM Rev..

[98]  D. Marquardt An Algorithm for Least-Squares Estimation of Nonlinear Parameters , 1963 .

[99]  R. Fletcher Practical Methods of Optimization , 1988 .

[100]  Michael Unser,et al.  An efficient mutual information optimizer for multiresolution image registration , 1998, Proceedings 1998 International Conference on Image Processing. ICIP98 (Cat. No.98CB36269).

[101]  Guido Gerig,et al.  Unbiased diffeomorphic atlas construction for computational anatomy , 2004, NeuroImage.

[102]  D. Shanno Conditioning of Quasi-Newton Methods for Function Minimization , 1970 .

[103]  Tal Arbel,et al.  Generalizing Inverse Compositional and ESM Image Alignment , 2010, International Journal of Computer Vision.

[104]  D. Louis Collins,et al.  Deformable Ultrasound Registration without Reconstruction , 2008, MICCAI.

[105]  A Collignon,et al.  Automated multimodality image registration using information theory , 1995 .

[106]  D. Louis Collins,et al.  Automatic Non-linear MRI-Ultrasound Registration for the Correction of Intra-operative Brain Deformations , 2001, MICCAI.

[107]  Richard Szeliski,et al.  Systems and Experiment Paper: Construction of Panoramic Image Mosaics with Global and Local Alignment , 2000, International Journal of Computer Vision.

[108]  Terry M. Peters,et al.  3D statistical neuroanatomical models from 305 MRI volumes , 1993, 1993 IEEE Conference Record Nuclear Science Symposium and Medical Imaging Conference.

[109]  Martin A. Fischler,et al.  The Representation and Matching of Pictorial Structures , 1973, IEEE Transactions on Computers.

[110]  A. Ardeshir Goshtasby,et al.  Piecewise linear mapping functions for image registration , 1986, Pattern Recognit..

[111]  Naoya Ohta,et al.  Fundamental matrix from optical flow: optimal computation and reliability evaluation , 2000, J. Electronic Imaging.

[112]  Simon Baker,et al.  Lucas-Kanade 20 Years On: A Unifying Framework , 2004, International Journal of Computer Vision.

[113]  Masatsugu Kidode,et al.  An iterative prediction and correction method for automatic stereocomparison , 1973, Comput. Graph. Image Process..

[114]  Balraj Naren,et al.  Medical Image Registration , 2022 .

[115]  Joelle Pineau,et al.  Point-based value iteration: An anytime algorithm for POMDPs , 2003, IJCAI.

[116]  C. D. Kuglin,et al.  The phase correlation image alignment method , 1975 .

[117]  Vwani P. Roychowdhury,et al.  Read Before You Cite! , 2003, Complex Syst..

[118]  M. J. D. Powell,et al.  An efficient method for finding the minimum of a function of several variables without calculating derivatives , 1964, Comput. J..

[119]  Maliha S. Nash,et al.  Handbook of Parametric and Nonparametric Statistical Procedures , 2001, Technometrics.

[120]  Li Chen,et al.  A Nonlinear Least Square Technique for Simultaneous Image Registration and Super-Resolution , 2007, IEEE Transactions on Image Processing.

[121]  Eric Horvitz,et al.  Reasoning about beliefs and actions under computational resource constraints , 1987, Int. J. Approx. Reason..

[122]  Paul A. Viola,et al.  Alignment by Maximization of Mutual Information , 1997, International Journal of Computer Vision.

[123]  Richard A. Harshman,et al.  An index formalism that generalizes the capabilities of matrix notation and algebra to n‐way arrays , 2001 .

[124]  Emmanuel Thomé,et al.  Computation of the Inverse and Determinant of a Matrix , 2002 .

[125]  N. Bićanić,et al.  Who was ‘–Raphson’? , 1979 .

[126]  Larry Nazareth,et al.  A family of variable metric updates , 1977, Math. Program..

[127]  Richard G. Carter,et al.  Numerical Experience with a Class of Algorithms for Nonlinear Optimization Using Inexact Function and Gradient Information , 1993, SIAM J. Sci. Comput..

[128]  Dinggang Shen,et al.  HAMMER: hierarchical attribute matching mechanism for elastic registration , 2002, IEEE Transactions on Medical Imaging.

[129]  Max A. Viergever,et al.  Mutual-information-based registration of medical images: a survey , 2003, IEEE Transactions on Medical Imaging.

[130]  Baba C. Vemuri,et al.  Non-Rigid Multi-Modal Image Registration Using Cross-Cumulative Residual Entropy , 2007, International Journal of Computer Vision.

[131]  Gary E. Christensen,et al.  Consistent image registration , 2001, IEEE Transactions on Medical Imaging.

[132]  Matthew A. Brown,et al.  Automatic Panoramic Image Stitching using Invariant Features , 2007, International Journal of Computer Vision.

[133]  Max A. Viergever,et al.  Brain shift estimation in image-guided neurosurgery using 3-D ultrasound , 2005, IEEE Transactions on Biomedical Engineering.

[134]  Hwann-Tzong Chen,et al.  Real-time tracking using trust-region methods , 2004, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[135]  Daniel Rueckert,et al.  Nonrigid registration using free-form deformations: application to breast MR images , 1999, IEEE Transactions on Medical Imaging.

[136]  Vincent Lepetit,et al.  Linear and Quadratic Subsets for Template-Based Tracking , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[137]  Jon Rokne,et al.  Homogeneous coordinates , 1994, The Visual Computer.

[138]  T. Brox,et al.  Universität Des Saarlandes Fachrichtung 6.1 – Mathematik a Survey on Variational Optic Flow Methods for Small Displacements a Survey on Variational Optic Flow Methods for Small Displacements , 2022 .

[139]  Graeme P. Penney,et al.  Standardized evaluation methodology for 2-D-3-D registration , 2005, IEEE Transactions on Medical Imaging.

[140]  Ruzena Bajcsy,et al.  Multiresolution elastic matching , 1989, Comput. Vis. Graph. Image Process..

[141]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[142]  N. Hata,et al.  Three-Dimensional Optical Flow Method for Measurement of Volumetric Brain Deformation from Intraoperative MR Images , 2000, Journal of computer assisted tomography.

[143]  David J. Fleet,et al.  Performance of optical flow techniques , 1994, International Journal of Computer Vision.

[144]  Hartmut Dickhaus,et al.  A flexible registration and evaluation engine (f.r.e.e.) , 2007, Comput. Methods Programs Biomed..

[145]  Colin Studholme,et al.  Voxel similarity measures for automated image registration , 1994, Other Conferences.

[146]  Jing Ren,et al.  Rapid registration of multimodal images using a reduced number of voxels , 2006, SPIE Medical Imaging.

[147]  R. Hetherington The Perception of the Visual World , 1952 .

[148]  Tjalling J. Ypma,et al.  Historical Development of the Newton-Raphson Method , 1995, SIAM Rev..

[149]  Jean-Luc Bernon,et al.  A fast 3-D multimodality registration algorithm for human brain , 1999, Proceedings 1999 International Conference on Image Processing (Cat. 99CH36348).

[150]  Charles V. Stewart,et al.  Robust Parameter Estimation in Computer Vision , 1999, SIAM Rev..

[151]  Frédéric Dufaux,et al.  Efficient, robust, and fast global motion estimation for video coding , 2000, IEEE Trans. Image Process..

[152]  Berthold K. P. Horn,et al.  Determining Optical Flow , 1981, Other Conferences.

[153]  D. Louis Collins,et al.  Animal: Validation and Applications of Nonlinear Registration-Based Segmentation , 1997, Int. J. Pattern Recognit. Artif. Intell..

[154]  Richard P. Wildes,et al.  Video georegistration: algorithm and quantitative evaluation , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[155]  Simon Baker,et al.  Active Appearance Models Revisited , 2004, International Journal of Computer Vision.

[156]  Selim Benhimane,et al.  A unified approach to visual tracking and servoing , 2005, Robotics Auton. Syst..

[157]  Maxime Descoteaux,et al.  Validation of vessel-based registration for correction of brain shift , 2007, Medical Image Anal..

[158]  Michael J. Black,et al.  EigenTracking: Robust Matching and Tracking of Articulated Objects Using a View-Based Representation , 1996, International Journal of Computer Vision.

[159]  Andrew J. Davison,et al.  Active search for real-time vision , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[160]  Michal Irani,et al.  Improving resolution by image registration , 1991, CVGIP Graph. Model. Image Process..

[161]  William K. Pratt,et al.  Correlation Techniques of Image Registration , 1974, IEEE Transactions on Aerospace and Electronic Systems.

[162]  Jan Flusser,et al.  Image registration methods: a survey , 2003, Image Vis. Comput..

[163]  Mark S. Boddy,et al.  An Analysis of Time-Dependent Planning , 1988, AAAI.

[164]  Takeo Kanade,et al.  An Iterative Image Registration Technique with an Application to Stereo Vision , 1981, IJCAI.

[165]  F. A. Seiler,et al.  Numerical Recipes in C: The Art of Scientific Computing , 1989 .

[166]  Michael I. Miller,et al.  Deformable templates using large deformation kinematics , 1996, IEEE Trans. Image Process..

[167]  Ezio Malis,et al.  Improving vision-based control using efficient second-order minimization techniques , 2004, IEEE International Conference on Robotics and Automation, 2004. Proceedings. ICRA '04. 2004.

[168]  P. Golland,et al.  Non-rigid Groupwise Registration using B-Spline Deformation Model , 2007, The Insight Journal.

[169]  Tim Hesterberg,et al.  Introduction to Stochastic Search and Optimization: Estimation, Simulation, and Control , 2004, Technometrics.