Crystallization behavior of the Li2S–P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer
暂无分享,去创建一个
T. Ohno | A. Hayashi | M. Tatsumisago | Yoshinori Tanaka | H. Tsukasaki | S. Mori | Misae Otoyama | Yota Mori | Takamasa Asano | So Yubuchi
[1] A. Hayashi,et al. Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries , 2017 .
[2] A. Hayashi,et al. Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes , 2017, Scientific Reports.
[3] Satoshi Hori,et al. High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.
[4] S. Ujiie,et al. Preparation and electrochemical characterization of (100 − x)(0.7Li2S·0.3P2S5)·xLiBr glass–ceramic electrolytes , 2014, Materials for Renewable and Sustainable Energy.
[5] Kazunori Takada,et al. A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .
[6] Alexander Kuhn,et al. Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes , 2013 .
[7] Klaus Zick,et al. Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.
[8] G. Radnóczi,et al. Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part III: Application Examples , 2012, Microscopy and Microanalysis.
[9] Yuki Kato,et al. A lithium superionic conductor. , 2011, Nature materials.
[10] Masahiro Tatsumisago,et al. Preparation and ionic conductivity of Li7P3S11 − z glass-ceramic electrolytes , 2010 .
[11] J. Lábár. Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part II: Implementation , 2009, Microscopy and Microanalysis.
[12] J. Lábár. Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part I: Principles , 2008, Microscopy and Microanalysis.
[13] S. Adams,et al. Crystal structure of a superionic conductor, Li7P3S11 , 2007 .
[14] Fuminori Mizuno,et al. High lithium ion conducting glass-ceramics in the system Li2S–P2S5 , 2006 .
[15] J. Lábár. Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. , 2005, Ultramicroscopy.
[16] K. Tadanaga,et al. New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .
[17] Tsutomu Minami,et al. Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses , 2003 .
[18] F. Kubel,et al. Crystal structure of dilithiumsulfíde, Li2S , 1999 .
[19] Burke,et al. Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.
[20] Hafner,et al. Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.
[21] Smith,et al. Pressure effects on the martensitic transformation in metallic lithium. , 1990, Physical review. B, Condensed matter.
[22] R. Mercier,et al. Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li4P2S6 , 1982 .
[23] S. Abrahams. THE CRYSTAL AND MOLECULAR STRUCTURE OF ORTHORHOMBIC SULFUR , 1955 .