Crystallization behavior of the Li2S–P2S5 glass electrolyte in the LiNi1/3Mn1/3Co1/3O2 positive electrode layer

[1]  A. Hayashi,et al.  Analysis of structural and thermal stability in the positive electrode for sulfide-based all-solid-state lithium batteries , 2017 .

[2]  A. Hayashi,et al.  Direct observation of a non-crystalline state of Li2S–P2S5 solid electrolytes , 2017, Scientific Reports.

[3]  Satoshi Hori,et al.  High-power all-solid-state batteries using sulfide superionic conductors , 2016, Nature Energy.

[4]  S. Ujiie,et al.  Preparation and electrochemical characterization of (100 − x)(0.7Li2S·0.3P2S5)·xLiBr glass–ceramic electrolytes , 2014, Materials for Renewable and Sustainable Energy.

[5]  Kazunori Takada,et al.  A sulphide lithium super ion conductor is superior to liquid ion conductors for use in rechargeable batteries , 2014 .

[6]  Alexander Kuhn,et al.  Tetragonal Li10GeP2S12 and Li7GePS8 – exploring the Li ion dynamics in LGPS Li electrolytes , 2013 .

[7]  Klaus Zick,et al.  Li10SnP2S12: an affordable lithium superionic conductor. , 2013, Journal of the American Chemical Society.

[8]  G. Radnóczi,et al.  Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part III: Application Examples , 2012, Microscopy and Microanalysis.

[9]  Yuki Kato,et al.  A lithium superionic conductor. , 2011, Nature materials.

[10]  Masahiro Tatsumisago,et al.  Preparation and ionic conductivity of Li7P3S11 − z glass-ceramic electrolytes , 2010 .

[11]  J. Lábár Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part II: Implementation , 2009, Microscopy and Microanalysis.

[12]  J. Lábár Electron Diffraction Based Analysis of Phase Fractions and Texture in Nanocrystalline Thin Films, Part I: Principles , 2008, Microscopy and Microanalysis.

[13]  S. Adams,et al.  Crystal structure of a superionic conductor, Li7P3S11 , 2007 .

[14]  Fuminori Mizuno,et al.  High lithium ion conducting glass-ceramics in the system Li2S–P2S5 , 2006 .

[15]  J. Lábár Consistent indexing of a (set of) single crystal SAED pattern(s) with the ProcessDiffraction program. , 2005, Ultramicroscopy.

[16]  K. Tadanaga,et al.  New, Highly Ion‐Conductive Crystals Precipitated from Li2S–P2S5 Glasses , 2005 .

[17]  Tsutomu Minami,et al.  Formation of superionic crystals from mechanically milled Li2S–P2S5 glasses , 2003 .

[18]  F. Kubel,et al.  Crystal structure of dilithiumsulfíde, Li2S , 1999 .

[19]  Burke,et al.  Generalized Gradient Approximation Made Simple. , 1996, Physical review letters.

[20]  Hafner,et al.  Ab initio molecular dynamics for liquid metals. , 1995, Physical review. B, Condensed matter.

[21]  Smith,et al.  Pressure effects on the martensitic transformation in metallic lithium. , 1990, Physical review. B, Condensed matter.

[22]  R. Mercier,et al.  Synthese, structure cristalline et analyse vibrationnelle de l'hexathiohypodiphosphate de lithium Li4P2S6 , 1982 .

[23]  S. Abrahams THE CRYSTAL AND MOLECULAR STRUCTURE OF ORTHORHOMBIC SULFUR , 1955 .