Water stable Zr-benzenedicarboxylate metal-organic frameworks as photocatalysts for hydrogen generation.

The Zr-containing metal-organic frameworks (MOFs) formed by terephthalate (UiO-66) and 2-aminoterephthalate ligands [UiO-66(NH(2))] are two notably water-resistant MOFs that exhibit photocatalytic activity for hydrogen generation in methanol or water/methanol upon irradiation at wavelength longer than 300 nm. The apparent quantum yield for H(2) generation using monochromatic light at 370 nm in water/methanol 3:1 was of 3.5% for UiO-66(NH(2)). Laser-flash photolysis has allowed detecting for UiO-66 and UiO-66(NH(2)) the photochemical generation of a long lived charge separated state whose decay is not complete 300 μs after the laser flash. Our finding and particularly the influence of the amino group producing a bathochromic shift in the optical spectrum without altering the photochemistry shows promises for the development of more efficient MOFs for water splitting.

[1]  T. Tachikawa,et al.  Iodine-Doped TiO2 Photocatalysts: Correlation between Band Structure and Mechanism , 2008 .

[2]  S. Martin,et al.  Environmental Applications of Semiconductor Photocatalysis , 1995 .

[3]  T. Tachikawa,et al.  Photoinduced Charge-Transfer Processes on MOF-5 Nanoparticles: Elucidating Differences between Metal-Organic Frameworks and Semiconductor Metal Oxides , 2008 .

[4]  F. Mertens,et al.  Proton and water activity-controlled structure formation in zinc carboxylate-based metal organic frameworks. , 2008, The journal of physical chemistry. A.

[5]  S. Natarajan,et al.  Open-framework structures of transition-metal compounds. , 2008, Angewandte Chemie.

[6]  O. M. Yaghi,et al.  Retikuläre Chemie metall‐organischer Polyeder , 2008 .

[7]  A. Corma,et al.  Metal–organic frameworks as semiconductors , 2010 .

[8]  C. Janiak Engineering coordination polymers towards applications , 2003 .

[9]  Michael O'Keeffe,et al.  Reticular chemistry of metal-organic polyhedra. , 2008, Angewandte Chemie.

[10]  Stuart L James,et al.  Metal-organic frameworks. , 2003, Chemical Society reviews.

[11]  Carlo Lamberti,et al.  A new zirconium inorganic building brick forming metal organic frameworks with exceptional stability. , 2008, Journal of the American Chemical Society.

[12]  Andrew Mills,et al.  An overview of semiconductor photocatalysis , 1997 .

[13]  S. Natarajan,et al.  Offene Gerüststrukturen von Übergangsmetallen , 2008 .

[14]  M. Popall,et al.  Applications of hybrid organic–inorganic nanocomposites , 2005 .

[15]  Michael J Zaworotko,et al.  Design and synthesis of metal-organic frameworks using metal-organic polyhedra as supermolecular building blocks. , 2009, Chemical Society reviews.

[16]  A. Furube,et al.  Direct measurement of picosecond interfacial electron transfer from photoexcited TiO2 powder to an adsorbed molecule in the opaque suspension , 1997 .

[17]  C. Langford,et al.  Photochemistry and picosecond absorption spectra of aqueous suspensions of a polycrystalline titanium dioxide optically transparent in the visible spectrum , 1993 .

[18]  R. M. Bowman,et al.  Femtosecond diffuse reflectance spectroscopy of TiO2 powders , 1995 .

[19]  Gerard P M van Klink,et al.  Isoreticular MOFs as efficient photocatalysts with tunable band gap: an operando FTIR study of the photoinduced oxidation of propylene. , 2008, ChemSusChem.

[20]  A. Corma,et al.  Zeolite-based photocatalysts. , 2004, Chemical communications.

[21]  Lili Wen,et al.  Structures, photoluminescence and photocatalytic properties of three new metal–organic frameworks based on non-rigid long bridges , 2009 .

[22]  Omar K Farha,et al.  Metal-organic framework materials as catalysts. , 2009, Chemical Society reviews.

[23]  B. Ferrer,et al.  Semiconductor behavior of a metal-organic framework (MOF). , 2007, Chemistry.

[24]  S. Kitagawa,et al.  Funktionale poröse Koordinationspolymere , 2004 .

[25]  H. García,et al.  Laser flash photolysis of dioxo iron phthalocyanine intercalated in hydrotalcite and its use as a photocatalyst , 2009 .

[26]  K. Lillerud,et al.  Electronic and vibrational properties of a MOF-5 metal-organic framework: ZnO quantum dot behaviour. , 2004, Chemical communications.

[27]  Hailian Li,et al.  Synthetic Strategies, Structure Patterns, and Emerging Properties in the Chemistry of Modular Porous Solids† , 1998 .

[28]  H. García,et al.  Applications for Metal−Organic Frameworks (MOFs) as Quantum Dot Semiconductors , 2007 .

[29]  J. Scaiano,et al.  Excited triplet states as probes in organized systems. An overview of recent results , 1992 .

[30]  Gérard Férey,et al.  Hybrid porous solids: past, present, future. , 2008, Chemical Society reviews.

[31]  Andrea Colombo,et al.  Does Interfacial Charge Transfer Compete with Charge Carrier Recombination? A Femtosecond Diffuse Reflectance Investigation of TiO2 Nanoparticles , 1996 .

[32]  Lili Wen,et al.  Structures, Photoluminescence, and Photocatalytic Properties of Six New Metal−Organic Frameworks Based on Aromatic Polycarboxylate Acids and Rigid Imidazole-Based Synthons , 2009 .

[33]  Susumu Kitagawa,et al.  Functional porous coordination polymers. , 2004, Angewandte Chemie.

[34]  B. Sumpter,et al.  Electronic structure and properties of isoreticular metal-organic frameworks: the case of M-IRMOF1 (M = Zn, Cd, Be, Mg, and Ca). , 2005, The Journal of chemical physics.