Differential-Algebraic Dynamic Logic DAL

We generalise dynamic logic to a logic for differential-algebraic programs, i.e., discrete programs augmented with first-order differential-algebraic formulas as continuous evolution constraints in addition to first-order discrete jump formulas. These programs characterise interacting discrete and continuous dynamics of hybrid systems elegantly and uniformly, including systems with disturbance and differential-algebraic equations. For our logic, we introduce a calculus over real arithmetic with discrete induction and a new differential induction with which differential-algebraic programs can be verified by exploiting their differential constraints algebraically without having to solve them.We develop the theory of differential induction and differential refinement and analyse their deductive power. As an example, we present parametric tangential roundabout manoeuvres in air traffic control and prove collision avoidance in our calculus.

[1]  J. Lygeros,et al.  Computability of finite-time reachable sets for hybrid systems , 2005, Proceedings of the 44th IEEE Conference on Decision and Control.

[2]  George J. Pappas,et al.  Hybrid Systems: Computation and Control , 2004, Lecture Notes in Computer Science.

[3]  César A. Muñoz,et al.  Formal Verification of an Optimal Air Traffic Conflict Resolution and Recovery Algorithm , 2007, WoLLIC.

[4]  Ernst-Rüdiger Olderog,et al.  Automating Verification of Cooperation, Control, and Design in Traffic Applications , 2007, Formal Methods and Hybrid Real-Time Systems.

[5]  Inseok Hwang,et al.  Protocol-Based Conflict Resolution for Air Traffic Control , 2007 .

[6]  Henny B. Sipma,et al.  Constructing invariants for hybrid systems , 2008, Formal Methods Syst. Des..

[7]  André Platzer,et al.  Differential Dynamic Logic for Verifying Parametric Hybrid Systems , 2007, TABLEAUX.

[8]  Antoine Girard,et al.  Reachability Analysis of Nonlinear Systems Using Conservative Approximation , 2003, HSCC.

[9]  A. Nerode,et al.  Logics for hybrid systems , 2000, Proceedings of the IEEE.

[10]  Dexter Kozen,et al.  Kleene algebra with tests , 1997, TOPL.

[11]  K. S. Sibirsky Introduction to Topological Dynamics , 2011 .

[12]  Michael S. Branicky,et al.  General Hybrid Dynamical Systems: Modeling, Analysis, and Control , 1996, Hybrid Systems.

[13]  Claude Kirchner,et al.  Theorem Proving Modulo , 2003, Journal of Automated Reasoning.

[14]  Kaisa Sere,et al.  Hybrid action systems , 2003, Theor. Comput. Sci..

[15]  André Platzer,et al.  A Temporal Dynamic Logic for Verifying Hybrid System Invariants , 2007, LFCS.

[16]  Melvin Fitting,et al.  First-Order Logic and Automated Theorem Proving , 1990, Graduate Texts in Computer Science.

[17]  George E. Collins,et al.  Partial Cylindrical Algebraic Decomposition for Quantifier Elimination , 1991, J. Symb. Comput..

[18]  André Platzer,et al.  KeYmaera: A Hybrid Theorem Prover for Hybrid Systems (System Description) , 2008, IJCAR.

[19]  Carla Piazza,et al.  Algorithmic Algebraic Model Checking I: Challenges from Systems Biology , 2005, CAV.

[20]  Marian Boylan Pour-el,et al.  A computable ordinary differential equation which possesses no computable solution , 1979 .

[21]  Bernhard Beckert,et al.  Dynamic Logic with Non-rigid Functions , 2006, IJCAR.

[22]  Ashish Tiwari,et al.  Generating Polynomial Invariants for Hybrid Systems , 2005, HSCC.

[23]  André Platzer,et al.  Differential Dynamic Logic for Hybrid Systems , 2008, Journal of Automated Reasoning.

[24]  Anders P. Ravn,et al.  An Extended Duration Calculus for Hybrid Real-Time Systems , 1992, Hybrid Systems.

[25]  Nancy A. Lynch,et al.  High-level modeling and analysis of TCAS , 1999, Proceedings 20th IEEE Real-Time Systems Symposium (Cat. No.99CB37054).

[26]  James H. Davenport,et al.  Real Quantifier Elimination is Doubly Exponential , 1988, J. Symb. Comput..

[27]  Joël Ouaknine,et al.  Abstraction and Counterexample-Guided Refinement in Model Checking of Hybrid Systems , 2003, Int. J. Found. Comput. Sci..

[28]  Gilles Dowek,et al.  Provably Safe Coordinated Strategy for Distributed Conflict Resolution , 2005 .

[29]  C. W. Gear,et al.  Differential-algebraic equations index transformations , 1988 .

[30]  Edmund M. Clarke,et al.  The Image Computation Problem in Hybrid Systems Model Checking , 2007, HSCC.

[31]  Sumit Gulwani,et al.  Constraint-Based Approach for Analysis of Hybrid Systems , 2008, CAV.

[32]  Mieke Massink,et al.  Modelling Free Flight with Collision Avoidance. : 270-280 , 2001 .

[33]  Thomas A. Henzinger,et al.  Hybrid Automata: An Algorithmic Approach to the Specification and Verification of Hybrid Systems , 1992, Hybrid Systems.

[34]  Martin Fränzle,et al.  Analysis of Hybrid Systems: An Ounce of Realism Can Save an Infinity of States , 1999, CSL.

[35]  R. Remmert,et al.  European Mathematical Society , 1994 .

[36]  E. Kolchin Differential Algebra and Algebraic Groups , 2012 .

[37]  Mieke Massink,et al.  Modelling free flight with collision avoidance , 2001, Proceedings Seventh IEEE International Conference on Engineering of Complex Computer Systems.

[38]  S. Shankar Sastry,et al.  Conflict resolution for air traffic management: a study in multiagent hybrid systems , 1998, IEEE Trans. Autom. Control..

[39]  Stefan Ratschan,et al.  Guaranteed Termination in the Verification of LTL Properties of Non-linear Robust Discrete Time Hybrid Systems , 2005, ATVA.

[40]  K. Gödel Über formal unentscheidbare Sätze der Principia Mathematica und verwandter Systeme I , 1931 .

[41]  Ali Jadbabaie,et al.  Safety Verification of Hybrid Systems Using Barrier Certificates , 2004, HSCC.

[42]  George J. Pappas,et al.  A Framework for Worst-Case and Stochastic Safety Verification Using Barrier Certificates , 2007, IEEE Transactions on Automatic Control.

[43]  Cesare Tinelli,et al.  Cooperation of Background Reasoners in Theory Reasoning by Residue Sharing , 2003, Journal of Automated Reasoning.

[44]  Jerzy Tiuryn,et al.  Dynamic logic , 2001, SIGA.

[45]  A. Tarski A Decision Method for Elementary Algebra and Geometry , 2023 .

[46]  Volker Mehrmann,et al.  Differential-Algebraic Equations: Analysis and Numerical Solution , 2006 .

[47]  P. Hartman Ordinary Differential Equations , 1965 .

[48]  S. Sastry,et al.  Zeno hybrid systems , 2001 .

[49]  T. Henzinger The theory of hybrid automata , 1996, LICS 1996.