Classifying Recursive Functions

This chapter presents the study of the interplay between recursion in higher types and transfinite recursion. The chapter introduces the theory of partial continuous functionals, based on Scott's notion of an information system. The partial continuous functionals are central for any the analysis of higher type computability, which is based on the rather natural assumption that any computation ought to be finite. The reason is simply that they form the mathematically appropriate domain of a computable functional. The chapter also presents the collapsing results and discusses the extended Grzegorczyk hierarchy. An introduction to partial continuous functional and some general material concerning computability in higher types is also presented in the chapter. The chapter discusses bounded fixed point operators and concerns elimination of detours through higher types by transfinite recursion.

[1]  A. Grzegorczyk Some classes of recursive functions , 1964 .

[2]  S. C. Kleene,et al.  Recursive functionals and quantifiers of finite types. II , 1959 .

[3]  J. N. Crossley,et al.  Formal Systems and Recursive Functions , 1963 .

[4]  Johan Moldestad Computations in Higher Types , 1977 .

[5]  H. E. Rose Subrecursion: Functions and Hierarchies , 1984 .

[6]  Joseph R. Shoenfield,et al.  Mathematical logic , 1967 .

[7]  S. C. Kleene,et al.  Extension of an effectively generated class of functions by enumeration , 1958 .

[8]  Yu. L. Ershov Computable functionals of finite types , 1972 .

[9]  Harvey M. Friedman,et al.  Elementary Descent Recursion and Proof Theory , 1995, Ann. Pure Appl. Log..

[10]  Patrick Suppes,et al.  Logic, Methodology and Philosophy of Science , 1963 .

[11]  G. E. Mints Quantifier-free and one-quantifier systems , 1972 .

[12]  Jr. Hartley Rogers Theory of Recursive Functions and Effective Computability , 1969 .

[13]  Jean-Yves Girard,et al.  Π12-logic, Part 1: Dilators , 1981 .

[14]  Yu. L. Ershov,et al.  Maximal and everywhere-defined functionals , 1974 .

[15]  Zuber,et al.  Proof Theory at Work: Program Development in the Minlog System , 1998 .

[16]  Edward R. Griffor Handbook of Computability Theory , 1999, Handbook of Computability Theory.

[17]  Helmut Schwichtenberg,et al.  Ordinal Bounds for Programs , 1995 .

[18]  Dana S. Scott,et al.  Outline of a Mathematical Theory of Computation , 1970 .

[19]  Alex Simpson Mathematical Theory of Domains , 1998 .

[20]  Helmut Schwichtenberg Finite Notations for Infinite Terms , 1998, Ann. Pure Appl. Log..

[21]  S. C. Kleene,et al.  Turing-Machine Computable Functionals of Finite Types I , 1966 .

[22]  D. Normann The countable functionals , 1980 .

[23]  G. Sacks Higher recursion theory , 1990 .

[24]  G.D. Plotkin,et al.  LCF Considered as a Programming Language , 1977, Theor. Comput. Sci..

[25]  Dag Normann,et al.  The Continuous Functionals , 1999, Handbook of Computability Theory.

[26]  Glynn Winskel,et al.  Using Information Systems to Solve Recursive Domain Equations , 1991, Inf. Comput..

[27]  G. Takeuti Proof Theory , 1975 .

[28]  Ulrich Berger,et al.  Total Sets and Objects in Domain Theory , 1993, Ann. Pure Appl. Log..

[29]  Peter Clote,et al.  Computation Models and Function Algebras , 1999, Handbook of Computability Theory.

[30]  Wilhelm Ackermann,et al.  Zur Widerspruchsfreiheit der Zahlentheorie , 1940 .

[31]  Fred Zemke,et al.  P.R.-regulated systems of notation and the subrecursive hierarchy equivalence property , 1977 .

[32]  Grzegorcyk's hierarchy and Iep σ 1 , 1994 .

[33]  Helmut Schwichtenberg Eine Klassifikation der e0-rekursiven Funktionen , 1971 .

[34]  G. Mints,et al.  Finite investigations of transfinite derivations , 1978 .

[35]  Walter Dosch,et al.  Reduction Relations in Strict Applicative Language , 1992, ISTCS.

[36]  H. Schwichtenberg Proof Theory: Some Applications of Cut-Elimination , 1977 .

[37]  Karl-Heinz Niggl Subrecursive hierarchies on Scott domains , 1993, Arch. Math. Log..

[38]  R. Gandy,et al.  Computable and recursively countable functions of higher type , 1977 .

[39]  H. Schwichtenberg,et al.  Einige Anwendungen von unendlichen Termen und Wertfunktionalen , 1973 .

[40]  Karl-Heinz Niggl Towards the Computational Complexity of PRomega-Terms , 1995, Ann. Pure Appl. Log..

[41]  Y. Ershov Model of Partial Continuous Functionals , 1977 .

[42]  Dana S. Scott,et al.  Some Domain Theory and Denotational Semantics in Coq , 2009, TPHOLs.

[43]  S. Wainer,et al.  Provably computable functions and the fast growing hierarchy , 1987 .

[44]  H. Schwichtenberg,et al.  Beweistheoretische Charakterisierung einer Erweiterung der Grzegorczyk-Hierarchie , 1972 .

[45]  H. Schwichtenberg,et al.  Rekursionszahlen und die Grzegorczyk-Hierarchie , 1969 .

[46]  Grigori Mints,et al.  Selected papers in proof theory , 1992 .

[47]  Georg Kreisel,et al.  On the interpretation of non-finitist proofs—Part I , 1951, Journal of Symbolic Logic.

[48]  S. Buss Handbook of proof theory , 1998 .

[49]  Daniel Leivant,et al.  The Expressiveness of Simple and Second-Order Type Structures , 1983, JACM.

[50]  William W. Tait,et al.  Normal derivability in classical logic , 1968 .

[51]  S. S. Wainer,et al.  A classification of the ordinal recursive functions , 1970 .

[52]  Stephen A. Cook,et al.  Computability and Complexity of Higher Type Functions , 1992 .

[53]  Sur une intégrale , 1959 .

[54]  Wilfried Buchholz,et al.  Notation systems for infinitary derivations , 1991, Arch. Math. Log..

[55]  John C. Shepherdson,et al.  Computability of Recursive Functions , 1963, JACM.

[56]  M. Minsky Recursive Unsolvability of Post's Problem of "Tag" and other Topics in Theory of Turing Machines , 1961 .

[57]  Andreas Weiermann,et al.  Investigations on slow versus fast growing: How to majorize slow growing functions nontrivially by fast growing ones , 1995, Arch. Math. Log..

[58]  R. Platek Foundations of recursion theory , 1966 .

[59]  Stanley S. Wainer,et al.  Chapter III - Hierarchies of Provably Recursive Functions , 1998 .

[60]  Andreas Weiermann,et al.  A Uniform Approach to Fundamental Sequences and Hierarchies , 1994, Math. Log. Q..

[61]  W. Tait Infinitely Long Terms of Transfinite Type , 1965 .

[62]  Von Kurt Gödel,et al.  ÜBER EINE BISHER NOCH NICHT BENÜTZTE ERWEITERUNG DES FINITEN STANDPUNKTES , 1958 .

[63]  K. Schütte Beweistheoretische Erfassung der unendlichen Induktion in der Zahlentheorie , 1950 .

[64]  S. Wainer,et al.  Hierarchies of number-theoretic functions. I , 1970 .

[65]  Yehoshua Bar-Hillel,et al.  The Intrinsic Computational Difficulty of Functions , 1969 .

[66]  Helmut Schwichtenberg,et al.  Elimination of higher type levels in definitions of primitive recursive functionals , 1975 .