Development and experimental validation of an adaptive extended Kalman filter for the localization of mobile robots

A basic requirement for an autonomous mobile robot is its capability to elaborate the sensor measures to localize itself with respect to a coordinate system. To this purpose, the data provided by odometric and sonar sensors are here fused together by means of an extended Kalman filter. The performance of the filter is improved by an online adjustment of the input and measurement noise covariances obtained by a suitably defined estimation algorithm.

[1]  E. M. Oblow,et al.  Treatment of systematic errors in the processing of wide-angle sonar sensor data for robotic navigation , 1990, IEEE Trans. Robotics Autom..

[2]  Kajiro Watanabe,et al.  Fuzzy Logic Rule-Based Kalman Filter for Estimating True Speed of A Ground Vehicle , 1995, Intell. Autom. Soft Comput..

[3]  Alberto Elfes,et al.  Sonar-based real-world mapping and navigation , 1987, IEEE J. Robotics Autom..

[4]  Liqiang Feng,et al.  Measurement and correction of systematic odometry errors in mobile robots , 1996, IEEE Trans. Robotics Autom..

[5]  A. Jazwinski Stochastic Processes and Filtering Theory , 1970 .

[6]  Essameddin Badreddin,et al.  Mobile robot localization in a structured environment cluttered with obstacles , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[7]  Ger Honderd,et al.  Wall-following control of a mobile robot , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[8]  Guanrong Chen,et al.  Introduction to random signals and applied Kalman filtering, 2nd edn. Robert Grover Brown and Patrick Y. C. Hwang, Wiley, New York, 1992. ISBN 0‐471‐52573‐1, 512 pp., $62.95. , 1992 .

[9]  Sauro Longhi,et al.  Motion planning for unicycle and car-like robots , 1996, Int. J. Syst. Sci..

[10]  K. Kleinschmidt,et al.  Book Reviews : INDUSTRIAL NOISE AND VIBRATION CONTROL J.D. Irwin and E.R. Graf Prentice-Hall, Inc., Englewood Cliffs, NJ, 1979 , 1980 .

[11]  B. Anderson,et al.  Optimal Filtering , 1979, IEEE Transactions on Systems, Man, and Cybernetics.

[12]  Hugh F. Durrant-Whyte,et al.  Mobile robot localization by tracking geometric beacons , 1991, IEEE Trans. Robotics Autom..

[13]  Yoram Koren,et al.  Noise rejection for ultrasonic sensors in mobile robot applications , 1992, Proceedings 1992 IEEE International Conference on Robotics and Automation.

[14]  James L. Crowley,et al.  World modeling and position estimation for a mobile robot using ultrasonic ranging , 1989, Proceedings, 1989 International Conference on Robotics and Automation.

[15]  Yoram Koren,et al.  Error eliminating rapid ultrasonic firing for mobile robot obstacle avoidance , 1995, IEEE Trans. Robotics Autom..

[16]  Marie-José Aldon,et al.  Mobile robot attitude estimation by fusion of inertial data , 1993, [1993] Proceedings IEEE International Conference on Robotics and Automation.

[17]  Roman Kuc,et al.  A Physically Based Navigation Strategy for Sonar-Guided Vehicles , 1991, Int. J. Robotics Res..

[18]  Michael Drumheller,et al.  Mobile Robot Localization Using Sonar , 1987, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[19]  Kostas J. Kyriakopoulos,et al.  Sensor-based self-localization for wheeled mobile robots , 1995, J. Field Robotics.

[20]  R. Kuc,et al.  Characterizing pulses reflected from rough surfaces using ultrasound , 1991 .

[21]  W.D. Blair,et al.  Tracking maneuvering targets with multiple sensors: does more data always mean better estimates? , 1996, IEEE Transactions on Aerospace and Electronic Systems.

[22]  Chih-Ming Wang Location Estimation and Uncertainty Analysis for Mobile Robots , 1990, Autonomous Robot Vehicles.

[23]  Giuseppe Oriolo,et al.  Local incremental planning for nonholonomic mobile robots , 1994, Proceedings of the 1994 IEEE International Conference on Robotics and Automation.