Ag-assisted CBE growth of ordered InSb nanowire arrays

We present growth studies of InSb nanowires grown directly on and substrates. The nanowires were synthesized in a chemical beam epitaxy (CBE) system and are of cubic zinc blende structure. To initiate nanowire nucleation we used lithographically positioned silver (Ag) seed particles. Up to 87% of the nanowires nucleate at the lithographically pre-defined positions. Transmission electron microscopy (TEM) investigations furthermore showed that, typically, a parasitic InSb thin film forms on the substrates. This thin film is more pronounced for substrates than for substrates, where it is completely absent at low growth temperatures. Thus, using substrates and growth temperatures below 360 °C free-standing InSb nanowires can be synthesized.

[1]  K. Dick,et al.  A comparative study of the effect of gold seed particle preparation method on nanowire growth , 2010 .

[2]  M. Ozkan,et al.  Chemical vapor deposition and electrical characterization of sub-10 nm diameter InSb nanowires and field-effect transistors , 2010 .

[3]  E. Lind,et al.  Temperature dependent properties of InSb and InAs nanowire field-effect transistors , 2010 .

[4]  Nadine Geyer,et al.  Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching , 2010, Nanotechnology.

[5]  Vincenzo Grillo,et al.  InAs/InSb nanowire heterostructures grown by chemical beam epitaxy , 2009, Nanotechnology.

[6]  L. Wernersson,et al.  InSb heterostructure nanowires: MOVPE growth under extreme lattice mismatch , 2009, Nanotechnology.

[7]  Philippe Caroff,et al.  Giant, level-dependent g factors in InSb nanowire quantum dots. , 2009, Nano letters.

[8]  M. Heyns,et al.  Ultimate Scaling of CMOS Logic Devices with Ge and III–V Materials , 2009 .

[9]  Nadine Geyer,et al.  Three-beam interference lithography: upgrading a Lloyd's interferometer for single-exposure hexagonal patterning. , 2009, Optics letters.

[10]  Philippe Caroff,et al.  High-quality InAs/InSb nanowire heterostructures grown by metal-organic vapor-phase epitaxy. , 2008, Small.

[11]  Yong Ding,et al.  Growth of high quality, epitaxial InSb nanowires , 2007 .

[12]  M. Meyyappan,et al.  Synthesis of group III antimonide nanowires , 2007 .

[13]  L. Samuelson,et al.  Surface diffusion effects on growth of nanowires by chemical beam epitaxy , 2007 .

[14]  Lars Samuelson,et al.  Strain mapping in free-standing heterostructured wurtzite InAs/InP nanowires , 2007 .

[15]  L. Li,et al.  Fabrication and optical property of single-crystalline InSb nanowire arrays , 2007 .

[16]  Xiaoming Zhang,et al.  Semiconductor-metal transition in InSb nanowires and nanofilms under external electric field , 2006 .

[17]  Walter Riess,et al.  Nanowire-based one-dimensional electronics , 2006 .

[18]  A. Danilewsky,et al.  Synchrotron X-ray topography study of defects in indium antimonide P-I-N structures grown by metal organic vapour phase epitaxy , 2005 .

[19]  Lars Samuelson,et al.  Growth mechanisms for GaAs nanowires grown in CBE , 2004 .

[20]  S. Datta,et al.  Novel InSb-based quantum well transistors for ultra-high speed, low power logic applications , 2004, Proceedings. 7th International Conference on Solid-State and Integrated Circuits Technology, 2004..

[21]  Lars Samuelson,et al.  Role of surface diffusion in chemical beam epitaxy of InAs nanowires , 2004 .

[22]  R. Stradling,et al.  High-mobility InSb thin films on GaAs (0 0 1) substrate grown by the two-step growth process , 2004 .

[23]  Natalio Mingo,et al.  Thermoelectric figure of merit and maximum power factor in III–V semiconductor nanowires , 2004 .

[24]  Xingjun Liu,et al.  Thermodynamic calculations of phase equilibria, surface tension and viscosity in the In-Ag-X (X=Bi, Sb) system , 2004 .

[25]  I. Povey,et al.  Gas phase monitoring of reactions under InP MOVPE growth conditions for the decomposition of tertiarybutyl phosphine and related precursors , 1992 .

[26]  Philippe M. Fauchet,et al.  The effects of microcrystal size and shape on the one phonon Raman spectra of crystalline semiconductors , 1986 .

[27]  L. Ley,et al.  The one phonon Raman spectrum in microcrystalline silicon , 1981 .

[28]  K. Dick,et al.  Controlled polytypic and twin-plane superlattices in iii-v nanowires. , 2009, Nature nanotechnology.

[29]  L. Samuelson,et al.  The influence of surface diffusion in growth of IIIV nanowires , 2004 .