Contact resistance of flexible, transparent carbon nanotube films with metals

We studied the contact properties of different metals to optically-transparent single-walled carbon nanotube (SWCNT) films using fabrication processes compatible with flexible electronic applications. The SWCNT films are deposited on flexible polyethylene terephthalate substrate and patterned in test structures optimized for contact resistance measurements for a particular metal contact. Specific contact resistance and current transfer length is determined for Pt, Cr, Cu, and Au contacts. We also evaluate effects of chemical doping and thickness of SWCNT films on the contact resistance. We find that the current transfer length, defining the minimal dimensions of efficient contacts to transparent SWCNT films, ranges from 8×10−6 to 10−4 m for different metals.

[1]  Jin Jang,et al.  Contact resistance between Au and solution-processed CNT , 2010 .

[2]  Annick Loiseau,et al.  Electrical characterization of devices based on carbon nanotube films , 2010 .

[3]  Samuel Graham,et al.  Specific contact resistance at metal/carbon nanotube interfaces , 2009 .

[4]  Bernard Kippelen,et al.  Stability of Doped Transparent Carbon Nanotube Electrodes , 2008 .

[5]  R. Reifenberger,et al.  Determining the optimal contact length for a metal/multiwalled carbon nanotube interconnect , 2008 .

[6]  Pornsak Srisungsitthisunti,et al.  Measurement of metal/carbon nanotube contact resistance by adjusting contact length using laser ablation , 2008, Nanotechnology.

[7]  W. Goddard,et al.  Contact Resistance Properties between Nanotubes and Various Metals from Quantum Mechanics , 2007 .

[8]  G. Eda,et al.  Improved conductivity of transparent single-wall carbon nanotube thin films via stable postdeposition functionalization , 2007 .

[9]  G. Grüner,et al.  Carbon nanotube films for transparent and plastic electronics , 2006 .

[10]  Daihua Zhang,et al.  Transparent, conductive, and flexible carbon nanotube films and their application in organic light-emitting diodes. , 2006, Nano letters.

[11]  Liangbing Hu,et al.  Organic solar cells with carbon nanotube network electrodes , 2006 .

[12]  M. Reed,et al.  Specific contact resistivity of nanowire devices , 2006 .

[13]  K. R. Atkinson,et al.  Strong, Transparent, Multifunctional, Carbon Nanotube Sheets , 2005, Science.

[14]  Liangbing Hu,et al.  Percolation in transparent and conducting carbon nanotube networks , 2004 .

[15]  John R. Reynolds,et al.  Transparent, Conductive Carbon Nanotube Films , 2004, Science.

[16]  Jean-Christophe P. Gabriel,et al.  Flexible Nanotube Electronics , 2003 .

[17]  M. Lundstrom,et al.  Ballistic carbon nanotube field-effect transistors , 2003, Nature.

[18]  K. Gamo,et al.  Contact resistance of multiwall carbon nanotubes , 2003 .

[19]  J. Tersoff Contact resistance of carbon nanotubes , 1999 .

[20]  M. Akiya,et al.  Specific contact resistance at extremely low temperatures , 1997 .

[21]  Horst H. Berger,et al.  Models for contacts to planar devices , 1972 .

[22]  M. Fuhrer,et al.  Extraordinary Mobility in Semiconducting Carbon Nanotubes , 2004 .