Particle Filter SLAM with High Dimensional Vehicle Model

This work presents a particle filter method closely related to Fastslam for solving the simultaneous localization and mapping (slam) problem. Using the standard Fastslam algorithm, only low-dimensional vehicle models can be handled due to computational constraints. In this work, an extra factorization of the problem is introduced that makes high-dimensional vehicle models computationally feasible. Results using experimental data from an unmanned aerial vehicle (helicopter) are presented. The proposed algorithm fuses measurements from on-board inertial sensors (accelerometer and gyro), barometer, and vision in order to solve the slam problem.

[1]  S. Shankar Sastry,et al.  An Invitation to 3-D Vision , 2004 .

[2]  A. B. Chatfield Fundamentals of high accuracy inertial navigation , 1997 .

[3]  John Weston,et al.  Strapdown Inertial Navigation Technology , 1997 .

[4]  Javier Civera,et al.  Inverse Depth Parametrization for Monocular SLAM , 2008, IEEE Transactions on Robotics.

[5]  F. Gustafsson,et al.  The marginalized particle filter in practice , 2006, 2006 IEEE Aerospace Conference.

[6]  Yolanda González Cid,et al.  Real-time 3d SLAM with wide-angle vision , 2004 .

[7]  J. Kuipers Quaternions and Rotation Sequences , 1998 .

[8]  Bernhard P. Wrobel,et al.  Multiple View Geometry in Computer Vision , 2001 .

[9]  Eduardo Mario Nebot,et al.  Consistency of the FastSLAM algorithm , 2006, Proceedings 2006 IEEE International Conference on Robotics and Automation, 2006. ICRA 2006..

[10]  A. Doucet,et al.  Particle filtering for partially observed Gaussian state space models , 2002 .

[11]  Patrik Haslum,et al.  A Distributed Architecture for Intelligent Unmanned Aerial Vehicle Experimentation , 2004 .

[12]  P. Savage Strapdown Inertial Navigation Integration Algorithm Design Part 1: Attitude Algorithms , 1998 .

[13]  Thomas B. Schön,et al.  Fast particle filters for multi-rate sensors , 2007, 2007 15th European Signal Processing Conference.

[14]  Simon J. Godsill,et al.  On sequential Monte Carlo sampling methods for Bayesian filtering , 2000, Stat. Comput..

[15]  Tom Drummond,et al.  Machine Learning for High-Speed Corner Detection , 2006, ECCV.

[16]  Tom Drummond,et al.  Fusing points and lines for high performance tracking , 2005, Tenth IEEE International Conference on Computer Vision (ICCV'05) Volume 1.

[17]  Thomas B. Schön,et al.  Marginalized particle filters for mixed linear/nonlinear state-space models , 2005, IEEE Transactions on Signal Processing.

[18]  Hugh Durrant-Whyte,et al.  Simultaneous localization and mapping (SLAM): part II , 2006 .

[19]  Arnaud Doucet,et al.  Particle filters for state estimation of jump Markov linear systems , 2001, IEEE Trans. Signal Process..

[20]  Sebastian Thrun,et al.  Simultaneous Localization and Mapping , 2008, Robotics and Cognitive Approaches to Spatial Mapping.

[21]  Wolfram Burgard,et al.  Probabilistic Robotics (Intelligent Robotics and Autonomous Agents) , 2005 .

[22]  Fredrik Gustafsson,et al.  Particle filters for positioning, navigation, and tracking , 2002, IEEE Trans. Signal Process..

[23]  Luc Van Gool,et al.  SURF: Speeded Up Robust Features , 2006, ECCV.

[24]  James J. Little,et al.  Design and analysis of a framework for real-time vision-based SLAM using Rao-Blackwellised particle filters , 2006, The 3rd Canadian Conference on Computer and Robot Vision (CRV'06).

[25]  G. Conte,et al.  Utilizing Model Structure for Efficient Simultaneous Localization and Mapping for a UAV Application , 2008, 2008 IEEE Aerospace Conference.

[26]  Zhengyou Zhang,et al.  A Flexible New Technique for Camera Calibration , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[27]  Andrew J. Davison,et al.  Real-time simultaneous localisation and mapping with a single camera , 2003, Proceedings Ninth IEEE International Conference on Computer Vision.

[28]  Olivier Stasse,et al.  MonoSLAM: Real-Time Single Camera SLAM , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[29]  P. Savage STRAPDOWN INERTIAL NAVIGATION INTEGRATION ALGORITHM DESIGN. PART 2: VELOCITY AND POSITION ALGORITHMS , 1998 .

[30]  Matthijs C. Dorst Distinctive Image Features from Scale-Invariant Keypoints , 2011 .

[31]  Jun S. Liu,et al.  Mixture Kalman filters , 2000 .

[32]  M. Shuster A survey of attitude representation , 1993 .

[33]  Christopher G. Harris,et al.  A Combined Corner and Edge Detector , 1988, Alvey Vision Conference.

[34]  Sebastian Thrun,et al.  FastSLAM 2.0: An Improved Particle Filtering Algorithm for Simultaneous Localization and Mapping that Provably Converges , 2003, IJCAI.

[35]  Mariusz Wzorek,et al.  From Motion Planning to Control - A Navigation Framework for an Autonomous Unmanned Aerial Vehicle , 2006 .

[36]  Neil J. Gordon,et al.  Editors: Sequential Monte Carlo Methods in Practice , 2001 .

[37]  Sebastian Thrun,et al.  FastSLAM: a factored solution to the simultaneous localization and mapping problem , 2002, AAAI/IAAI.

[38]  Timothy J. Robinson,et al.  Sequential Monte Carlo Methods in Practice , 2003 .

[39]  Thomas B. Schön,et al.  A framework for simultaneous localization and mapping utilizing model structure , 2007, 2007 10th International Conference on Information Fusion.

[40]  Tom Drummond,et al.  Scalable Monocular SLAM , 2006, 2006 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'06).

[41]  Hugh F. Durrant-Whyte,et al.  Simultaneous localization and mapping: part I , 2006, IEEE Robotics & Automation Magazine.

[42]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[43]  G. Casella,et al.  Rao-Blackwellisation of sampling schemes , 1996 .