Scattered data interpolation and approximation for computer graphics

The goal of scattered data interpolation techniques is to construct a (typically smooth) function from a set of unorganized samples. These techniques have a wide range of applications in computer graphics. For instance they can be used to model a surface from a set of sparse samples, to reconstruct a BRDF from a set of measurements, to interpolate motion capture data, or to compute the physical properties of a fluid. This course will survey and compare scattered interpolation algorithms and describe their applications in computer graphics. Although the course is focused on applying these techniques, we will introduce some of the underlying mathematical theory and briefly mention numerical considerations.

[1]  Holger Wendland,et al.  Scattered Data Approximation: Conditionally positive definite functions , 2004 .

[2]  Jason Lawrence,et al.  Eurographics Symposium on Rendering (2007) Efficient Basis Decomposition for Scattered Reflectance Data , 2022 .

[3]  Gregory E. Fasshauer,et al.  Solving differential equations with radial basis functions: multilevel methods and smoothing , 1999, Adv. Comput. Math..

[4]  Jean Duchon,et al.  Interpolation des fonctions de deux variables suivant le principe de la flexion des plaques minces , 1976 .

[5]  Robert Schaback,et al.  An Adaptive Greedy Algorithm for Solving Large RBF Collocation Problems , 2004, Numerical Algorithms.

[6]  Holger Wendland,et al.  Near-optimal data-independent point locations for radial basis function interpolation , 2005, Adv. Comput. Math..

[7]  Sung Yong Shin,et al.  On-line locomotion generation based on motion blending , 2002, SCA '02.

[8]  N. Aronszajn Theory of Reproducing Kernels. , 1950 .

[9]  Mathieu Desbrun,et al.  Learning controls for blend shape based realistic facial animation , 2003, SIGGRAPH '03.

[10]  Robert B. Fisher,et al.  A Comparison of Four Algorithms for Estimating 3-D Rigid Transformations , 1995, BMVC.

[11]  M. Otaduy,et al.  Multi-scale capture of facial geometry and motion , 2007, ACM Trans. Graph..

[12]  F. J. Narcowich,et al.  Generalized Hermite interpolation via matrix-valued conditionally positive definite functions , 1994 .

[13]  L. Schumaker,et al.  Scattered data fitting on the sphere , 1998 .

[14]  John P. Lewis,et al.  Lifting Detail from Darkness , 2001 .

[15]  Markus H. Gross,et al.  Efficient simplification of point-sampled surfaces , 2002, IEEE Visualization, 2002. VIS 2002..

[16]  H. Maring,et al.  Journal of Geophysical Research , 1949, Nature.

[17]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[18]  D. Shepard A two-dimensional interpolation function for irregularly-spaced data , 1968, ACM National Conference.

[19]  Radford M. Neal Pattern Recognition and Machine Learning , 2007, Technometrics.

[20]  B. Li,et al.  A Survey of Methods for Moving Least Squares Surfaces , 2008, VG/PBG@SIGGRAPH.

[21]  Ravi Ramamoorthi,et al.  Reflectance sharing: predicting appearance from a sparse set of images of a known shape , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[22]  Carsten Franke,et al.  Solving partial differential equations by collocation using radial basis functions , 1998, Appl. Math. Comput..

[23]  John P. Lewis,et al.  Generalized stochastic subdivision , 1987, TOGS.

[24]  David Salesin,et al.  Synthesizing realistic facial expressions from photographs , 1998, SIGGRAPH.

[25]  Christian B. Allen,et al.  Reduced surface point selection options for efficient mesh deformation using radial basis functions , 2010, J. Comput. Phys..

[26]  Hans-Peter Seidel,et al.  Multi-level partition of unity implicits , 2003, ACM Trans. Graph..

[27]  Grady B. Wright,et al.  Stability and Error Estimates for Vector Field Interpolation and Decomposition on the Sphere with RBFs , 2009, SIAM J. Numer. Anal..

[28]  Tomohiko Mukai,et al.  Geostatistical motion interpolation , 2005, SIGGRAPH 2005.

[29]  Scott Schaefer,et al.  Image deformation using moving least squares , 2006, ACM Trans. Graph..

[30]  Richard K. Beatson,et al.  Fast Solution of the Radial Basis Function Interpolation Equations: Domain Decomposition Methods , 2000, SIAM J. Sci. Comput..

[31]  Peter-Pike J. Sloan,et al.  Artist‐Directed Inverse‐Kinematics Using Radial Basis Function Interpolation , 2001, Comput. Graph. Forum.

[32]  Martin D. Buhmann,et al.  Radial Basis Functions: Theory and Implementations: Preface , 2003 .

[33]  S. Gortler,et al.  3D Deformation Using Moving Least Squares , 2007 .

[34]  R. Sibson,et al.  A brief description of natural neighbor interpolation , 1981 .

[35]  William V. Baxter,et al.  Locally controllable stylized shading , 2007, ACM Trans. Graph..

[36]  佐藤 幹夫 Theory of hyperfunctions , 1963 .

[37]  R. Franke Scattered data interpolation: tests of some methods , 1982 .

[38]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[39]  Patrick Pérez,et al.  Poisson image editing , 2003, ACM Trans. Graph..

[40]  E. Grinspun Discrete differential geometry : An applied introduction , 2008, SIGGRAPH 2008.

[41]  Jean-Daniel Boissonnat,et al.  Smooth surface reconstruction via natural neighbour interpolation of distance functions , 2002, Comput. Geom..

[42]  B. M. Fulk MATH , 1992 .

[43]  D. Cohen-Or,et al.  Robust moving least-squares fitting with sharp features , 2005, ACM Trans. Graph..

[44]  William V. Baxter,et al.  Latent Doodle Space , 2006, Comput. Graph. Forum.

[45]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[46]  Wojciech Matusik,et al.  Multi-scale capture of facial geometry and motion , 2007, ACM Trans. Graph..

[47]  Toshiharu Hatanaka,et al.  Multi-objective structure selection for radial basis function networks based on genetic algorithm , 2003, The 2003 Congress on Evolutionary Computation, 2003. CEC '03..

[48]  Marc Alexa,et al.  Anisotropic point set surfaces , 2006, AFRIGRAPH '06.

[49]  O. Amoignon,et al.  Mesh Deformation using Radial Basis Functions for Gradient-based Aerodynamic Shape Optimization , 2007 .

[50]  A. Cheng,et al.  Radial basis collocation methods for elliptic boundary value problems , 2005 .

[51]  Bernd Hamann,et al.  Discrete Sibson interpolation , 2006, IEEE Transactions on Visualization and Computer Graphics.

[52]  Markus H. Gross,et al.  Shape modeling with point-sampled geometry , 2003, ACM Trans. Graph..

[53]  R. L. Hardy Multiquadric equations of topography and other irregular surfaces , 1971 .

[54]  Frank Filbir,et al.  Stability results for approximation by positive definite functions on SO(3) , 2008, J. Approx. Theory.

[55]  Richard Franke,et al.  Smooth interpolation of large sets of scattered data , 1980 .

[56]  Václav Skala,et al.  Radial Basis Function Use for the restoration of Damaged Images , 2004, ICCVG.

[57]  X. Pennec Computing the Mean of Geometric Features Application to the Mean Rotation , 1998 .

[58]  S. Bergman The kernel function and conformal mapping , 1950 .

[59]  Richard K. Beatson,et al.  Reconstruction and representation of 3D objects with radial basis functions , 2001, SIGGRAPH.

[60]  Tsuneya Kurihara,et al.  Modeling deformable human hands from medical images , 2004, SCA '04.

[61]  Richard K. Beatson,et al.  Fast fitting of radial basis functions: Methods based on preconditioned GMRES iteration , 1999, Adv. Comput. Math..

[62]  N. SIAMJ.,et al.  DIVERGENCE-FREE KERNEL METHODS FOR APPROXIMATING THE STOKES PROBLEM , 2009 .

[63]  J. Meinguet Multivariate interpolation at arbitrary points made simple , 1979 .

[64]  Jun-yong Noh,et al.  Expression cloning , 2001, SIGGRAPH 2001.

[65]  E. Fuselier Refined error estimates for matrix-valued radial basis functions , 2007 .

[66]  Alexander J. Smola,et al.  Learning with kernels , 1998 .