Fungal Hybrid B heme peroxidases – unique fusions of a heme peroxidase domain with a carbohydrate-binding domain

[1]  Š. Janeček,et al.  The starch‐binding domain family CBM41—An in silico analysis of evolutionary relationships , 2017, Proteins.

[2]  D. Estrin,et al.  Kinetics, subcellular localization, and contribution to parasite virulence of a Trypanosoma cruzi hybrid type A heme peroxidase (TcAPx-CcP) , 2017, Proceedings of the National Academy of Sciences.

[3]  Silvio C. E. Tosatto,et al.  InterPro in 2017—beyond protein family and domain annotations , 2016, Nucleic Acids Res..

[4]  D. Hibbett,et al.  Genetic Bases of Fungal White Rot Wood Decay Predicted by Phylogenomic Analysis of Correlated Gene-Phenotype Evolution , 2017, Molecular biology and evolution.

[5]  C. Obinger,et al.  Genome sequence of the filamentous soil fungus Chaetomium cochliodes reveals abundance of genes for heme enzymes from all peroxidase and catalase superfamilies , 2016, BMC Genomics.

[6]  M. Marletta,et al.  Starch-degrading polysaccharide monooxygenases , 2016, Cellular and Molecular Life Sciences.

[7]  Matthew S. Gentry,et al.  Unique carbohydrate binding platforms employed by the glucan phosphatases , 2016, Cellular and Molecular Life Sciences.

[8]  Peer Bork,et al.  Interactive tree of life (iTOL) v3: an online tool for the display and annotation of phylogenetic and other trees , 2016, Nucleic Acids Res..

[9]  Sudhir Kumar,et al.  MEGA7: Molecular Evolutionary Genetics Analysis Version 7.0 for Bigger Datasets. , 2016, Molecular biology and evolution.

[10]  M. Margis-Pinheiro,et al.  Revisiting the Non-Animal Peroxidase Superfamily. , 2015, Trends in plant science.

[11]  Corey M. Hudson,et al.  Lignin-modifying processes in the rhizosphere of arid land grasses. , 2015, Environmental microbiology.

[12]  Namita Bhan,et al.  Antimicrobial mechanism of resveratrol‐trans‐dihydrodimer produced from peroxidase‐catalyzed oxidation of resveratrol , 2015, Biotechnology and bioengineering.

[13]  Md. Abu Sadat,et al.  Systematic characterization of the peroxidase gene family provides new insights into fungal pathogenicity in Magnaporthe oryzae , 2015, Scientific Reports.

[14]  Da Li,et al.  First-principles study on the structural and electronic properties of metallic HfH2 under pressure , 2015, Scientific Reports.

[15]  S. Hofbauer,et al.  Independent evolution of four heme peroxidase superfamilies , 2015, Archives of biochemistry and biophysics.

[16]  Michael J E Sternberg,et al.  The Phyre2 web portal for protein modeling, prediction and analysis , 2015, Nature Protocols.

[17]  Igor B. Zhulin,et al.  CDvist: a webserver for identification and visualization of conserved domains in protein sequences , 2015, Bioinform..

[18]  C. Obinger,et al.  Turning points in the evolution of peroxidase–catalase superfamily: molecular phylogeny of hybrid heme peroxidases , 2014, Cellular and Molecular Life Sciences.

[19]  Pedro M. Coutinho,et al.  The carbohydrate-active enzymes database (CAZy) in 2013 , 2013, Nucleic Acids Res..

[20]  María Martín,et al.  Activities at the Universal Protein Resource (UniProt) , 2013, Nucleic Acids Res..

[21]  B. Griffin,et al.  Network Context and Selection in the Evolution to Enzyme Specificity , 2014 .

[22]  D. Hibbett,et al.  Lignin-degrading peroxidases in Polyporales: an evolutionary survey based on 10 sequenced genomes , 2013, Mycologia.

[23]  G. Doehlemann,et al.  Apoplastic immunity and its suppression by filamentous plant pathogens. , 2013, The New phytologist.

[24]  Qiang Li,et al.  PeroxiBase: a database for large-scale evolutionary analysis of peroxidases , 2012, Nucleic Acids Res..

[25]  D. Goodwin,et al.  Integral role of the I'-helix in the function of the "inactive" C-terminal domain of catalase-peroxidase (KatG). , 2013, Biochimica et biophysica acta.

[26]  Roger L. Chang,et al.  Network Context and Selection in the Evolution to Enzyme Specificity , 2012, Science.

[27]  Albee Y. Ling,et al.  The Paleozoic Origin of Enzymatic Lignin Decomposition Reconstructed from 31 Fungal Genomes , 2012, Science.

[28]  Maxim Teslenko,et al.  MrBayes 3.2: Efficient Bayesian Phylogenetic Inference and Model Choice Across a Large Model Space , 2012, Systematic biology.

[29]  Š. Janeček,et al.  Structural and evolutionary aspects of two families of non-catalytic domains present in starch and glycogen binding proteins from microbes, plants and animals. , 2011, Enzyme and microbial technology.

[30]  Teresa Blasco Máñez a structural perspective, , 2011 .

[31]  P. Moody,et al.  An analysis of substrate binding interactions in the heme peroxidase enzymes: a structural perspective. , 2010, Archives of biochemistry and biophysics.

[32]  S. Shigeoka,et al.  Euglena gracilis ascorbate peroxidase forms an intramolecular dimeric structure: its unique molecular characterization. , 2010, The Biochemical journal.

[33]  Birte Svensson,et al.  The carbohydrate‐binding module family 20 – diversity, structure, and function , 2009, The FEBS journal.

[34]  Søren Brunak,et al.  Analysis and prediction of gene splice sites in four Aspergillus genomes. , 2009, Fungal genetics and biology : FG & B.

[35]  Brandi L. Cantarel,et al.  The Carbohydrate-Active EnZymes database (CAZy): an expert resource for Glycogenomics , 2008, Nucleic Acids Res..

[36]  Yuh-Ju Sun,et al.  Crystal structures of the starch-binding domain from Rhizopus oryzae glucoamylase reveal a polysaccharide-binding path. , 2008, The Biochemical journal.

[37]  Christian Obinger,et al.  Evolution of catalases from bacteria to humans. , 2008, Antioxidants & redox signaling.

[38]  B. Yun,et al.  Peroxidase-mediated formation of the fungal polyphenol 3,14'-bihispidinyl. , 2008, Journal of microbiology and biotechnology.

[39]  J. Heinisch,et al.  Functional analyses of the extra‐ and intracellular domains of the yeast cell wall integrity sensors Mid2 and Wsc1 , 2007, FEBS letters.

[40]  Christophe Dunand,et al.  Prokaryotic origins of the non-animal peroxidase superfamily and organelle-mediated transmission to eukaryotes. , 2007, Genomics.

[41]  Ping-Chiang Lyu,et al.  Solution structure of family 21 carbohydrate-binding module from Rhizopus oryzae glucoamylase. , 2007, The Biochemical journal.

[42]  S. Brunak,et al.  Locating proteins in the cell using TargetP, SignalP and related tools , 2007, Nature Protocols.

[43]  A. Boraston,et al.  The structural basis of alpha-glucan recognition by a family 41 carbohydrate-binding module from Thermotoga maritima. , 2007, Journal of molecular biology.

[44]  Š. Janeček,et al.  The evolution of putative starch‐binding domains , 2006, FEBS letters.

[45]  Galina Polekhina,et al.  Structural basis for glycogen recognition by AMP-activated protein kinase. , 2005, Structure.

[46]  M. Zámocký Phylogenetic relationships in class I of the superfamily of bacterial, fungal, and plant peroxidases. , 2004, European journal of biochemistry.

[47]  Ruth Nussinov,et al.  A method for simultaneous alignment of multiple protein structures , 2004, Proteins.

[48]  Robert C. Edgar,et al.  MUSCLE: multiple sequence alignment with high accuracy and high throughput. , 2004, Nucleic acids research.

[49]  S. Kamitori,et al.  Complex structures of Thermoactinomyces vulgaris R-47 alpha-amylase 1 with malto-oligosaccharides demonstrate the role of domain N acting as a starch-binding domain. , 2004, Journal of molecular biology.

[50]  S. Strahl,et al.  Aberrant Processing of the WSC Family and Mid2p Cell Surface Sensors Results in Cell Death of Saccharomyces cerevisiae O-Mannosylation Mutants , 2004, Molecular and Cellular Biology.

[51]  C. Obinger,et al.  The catalytic role of the distal site asparagine-histidine couple in catalase-peroxidases. , 2003, European journal of biochemistry.

[52]  Stefan Janecek,et al.  A motif of a microbial starch-binding domain found in human genethonin , 2002, Bioinform..

[53]  A. Kaji,et al.  Crystal structures and structural comparison of Thermoactinomyces vulgaris R-47 alpha-amylase 1 (TVAI) at 1.6 A resolution and alpha-amylase 2 (TVAII) at 2.3 A resolution. , 2002, Journal of molecular biology.

[54]  S. Whelan,et al.  A general empirical model of protein evolution derived from multiple protein families using a maximum-likelihood approach. , 2001, Molecular biology and evolution.

[55]  J. Kim,et al.  Structure, specificity and function of cyclomaltodextrinase, a multispecific enzyme of the alpha-amylase family. , 2000, Biochimica et biophysica acta.

[56]  T. N. Bhat,et al.  The Protein Data Bank , 2000, Nucleic Acids Res..

[57]  Hugh B. Nicholas,et al.  GeneDoc: a tool for editing and annotating multiple sequence alignments , 1997 .

[58]  K. Welinder Superfamily of plant, fungal and bacterial peroxidases , 1992 .

[59]  H. Jespersen,et al.  Sequence homology between putative raw-starch binding domains from different starch-degrading enzymes. , 1989, The Biochemical journal.