Exponential dichotomy on the real line: SVD and QR methods

Abstract In this work we show when and how techniques based on the singular value decomposition (SVD) and the QR decomposition of a fundamental matrix solution can be used to infer if a system enjoys—or not—exponential dichotomy on the whole real line.

[1]  Neil Fenichel Persistence and Smoothness of Invariant Manifolds for Flows , 1971 .

[2]  L. Barreira,et al.  Lyapunov Exponents and Smooth Ergodic Theory , 2002 .

[3]  Kenneth J. Palmer,et al.  Exponential dichotomies and Fredholm operators , 1988 .

[4]  K. Palmer,et al.  Exponential separation, exponential dichotomy and spectral theory for linear systems of ordinary differential equations , 1982 .

[5]  Wolf-Jürgen Beyn,et al.  The Numerical Computation of Connecting Orbits in Dynamical Systems , 1990 .

[6]  I Ya Gol'dsheid,et al.  Lyapunov indices of a product of random matrices , 1989 .

[7]  Gunilla Kreiss,et al.  Stability of traveling waves: dichotomies and eigenvalue conditions on finite intervals , 1999 .

[8]  V. I. Oseledec A multiplicative ergodic theorem: Lyapunov characteristic num-bers for dynamical systems , 1968 .

[9]  F. V. Vleck,et al.  Stability and Asymptotic Behavior of Differential Equations , 1965 .

[10]  Luca Dieci,et al.  The singular value decomposition to approximate spectra of dynamical systems. Theoretical aspects , 2006 .

[11]  Neil Fenichel Geometric singular perturbation theory for ordinary differential equations , 1979 .

[12]  Exponential dichotomies for almost periodic equations , 1987 .

[13]  W. D. Evans,et al.  PARTIAL DIFFERENTIAL EQUATIONS , 1941 .

[14]  K. Palmer,et al.  Shadowing in Dynamical Systems: Theory and Applications , 2010 .

[15]  G. Benettin,et al.  Lyapunov Characteristic Exponents for smooth dynamical systems and for hamiltonian systems; a method for computing all of them. Part 1: Theory , 1980 .

[16]  G. Vegter,et al.  Algorithms for computing normally hyperbolic invariant manifolds , 1997 .

[17]  George R. Sell,et al.  Dichotomies for linear evolutionary equations in Banach spaces , 1994 .

[18]  K. Palmer A perturbation theorem for exponential dichotomies , 1987, Proceedings of the Royal Society of Edinburgh: Section A Mathematics.

[19]  Luca Dieci,et al.  Lyapunov and Sacker–Sell Spectral Intervals , 2007 .

[20]  L. Arnold Random Dynamical Systems , 2003 .

[21]  W. A. Coppel Dichotomies in Stability Theory , 1978 .

[22]  Luca Dieci,et al.  Lyapunov and other spectra : a survey ∗ , 2007 .

[23]  The structurally stable linear systems on the half-line are those with exponential dichotomies , 1979 .

[24]  Music Musi Georgia Institute of Technology , 2002 .

[25]  George R. Sell,et al.  Ergodic properties of linear dynamical systems , 1987 .

[26]  B. Sandstede,et al.  Chapter 18 - Stability of Travelling Waves , 2002 .

[27]  Luca Dieci,et al.  Lyapunov Spectral Intervals: Theory and Computation , 2002, SIAM J. Numer. Anal..

[28]  George R. Sell,et al.  A Spectral Theory for Linear Differential Systems , 1978 .

[29]  Kevin Zumbrun,et al.  Efficient Computation of Analytic Bases in Evans Function Analysis of Large Systems , 2006, Numerische Mathematik.

[30]  S. Pilyugin Shadowing in dynamical systems , 1999 .

[31]  Luca Dieci,et al.  Computation of invariant tori by the method of characteristics , 1995 .

[32]  Wolf-Jürgen Beyn,et al.  On well-posed problems for connecting orbits in dynamical systems , 1994 .

[33]  Luca Dieci,et al.  SVD algorithms to approximate spectra of dynamical systems , 2008, Math. Comput. Simul..

[34]  Li︠u︡dmila I︠A︡kovlevna Adrianova Introduction to linear systems of differential equations , 1995 .

[35]  K. Sakamoto Estimates on the Strength of Exponential Dichotomies and Application to Integral Manifolds , 1994 .