ASSESSMENT OF SYSTEMATIC CHROMATIC ERRORS THAT IMPACT SUB-1% PHOTOMETRIC PRECISION IN LARGE-AREA SKY SURVEYS

Meeting the science goals for many current and future ground-based optical large-area sky surveys requires that the calibrated broadband photometry is both stable in time and uniform over the sky to 1% precision or better. Past and current surveys have achieved photometric precision of 1%–2% by calibrating the survey’s stellar photometry with repeated measurements of a large number of stars observed in multiple epochs. The calibration techniques employed by these surveys only consider the relative frame-by-frame photometric zeropoint offset and the focal plane position-dependent illumination corrections, which are independent of the source color. However, variations in the wavelength dependence of the atmospheric transmission and the instrumental throughput induce source color-dependent systematic errors. These systematic errors must also be considered to achieve the most precise photometric measurements. In this paper, we examine such systematic chromatic errors (SCEs) using photometry from the Dark Energy Survey (DES) as an example. We first define a natural magnitude system for DES and calculate the systematic errors on stellar magnitudes when the atmospheric transmission and instrumental throughput deviate from the natural system. We conclude that the SCEs caused by the change of airmass in each exposure, the change of the precipitable water vapor and aerosol in the atmosphere over time, and the non-uniformity of instrumental throughput over the focal plane can be up to 2% in some bandpasses. We then compare the calculated SCEs with the observed DES data. For the test sample data, we correct these errors using measurements of the atmospheric transmission and instrumental throughput from auxiliary calibration systems. The residual after correction is less than 0.3%. Moreover, we calculate such SCEs for Type Ia supernovae and elliptical galaxies and find that the chromatic errors for non-stellar objects are redshift-dependent and can be larger than those for stars at certain redshifts.

C. B. D'Andrea | D. A. Finley | A. Roodman | D. J. James | M. Soares-Santos | H. T. Diehl | D. L. DePoy | K. Honscheid | N. Mondrik | D. Brooks | M. Schubnell | G. Tarle | E. Bertin | R. A. Gruendl | T. M. C. Abbott | G. M. Bernstein | A. K. Romer | I. Sevilla-Noarbe | D. A. Goldstein | R. C. Nichol | A. Benoit-L'evy | A. Carnero Rosell | L. N. da Costa | S. Desai | J. Frieman | D. Gruen | K. Kuehn | M. A. G. Maia | J. L. Marshall | B. Nord | R. Ogando | A. A. Plazas | E. Sanchez | V. Scarpine | F. Sobreira | E. Suchyta | B. Flaugher | R. Kessler | D. Capozzi | P. Fosalba | R. Miquel | J. Annis | J. Marriner | M. Carrasco Kind | J. Carretero | G. Gutierrez | A. R. Walker | E. Neilsen | S. Allam | M. Crocce | V. Vikram | H. Lin | D. Thomas | R. Nichol | J. Frieman | P. Fosalba | J. Mohr | D. Capozzi | L. Costa | K. Honscheid | M. Maia | R. Ogando | E. Rykoff | F. Sobreira | G. Bernstein | Peter Melchior | D. Tucker | R. Gruendl | J. Annis | R. Kessler | M. Sako | S. Allam | H. Diehl | I. Sevilla-Noarbe | T. Abbott | E. Bertin | D. Brooks | D. Burke | J. Carretero | M. Crocce | C. Cunha | C. D'Andrea | S. Desai | B. Flaugher | E. Gaztañaga | D. Gruen | G. Gutiérrez | D. James | K. Kuehn | R. Miquel | E. Neilsen | A. Plazas | A. Romer | V. Scarpine | M. Schubnell | E. Suchyta | G. Tarlé | A. Walker | D. Scolnic | M. Soares-Santos | A. Benoit-Lévy | E. Sánchez | D. Finley | D. Goldstein | B. Nord | D. Thomas | V. Vikram | W. Wester | J. Marriner | D. Depoy | S. Kent | N. Kuropatkin | S. Boada | D. L. Burke | C. E. Cunha | E. Gaztanaga | N. Kuropatkin | J. J. Mohr | E. S. Rykoff | D. Scolnic | W. Wester | S. Kent | C. J. Miller | M. Sako | R. C. Smith | D. Tucker | T. S. Li | S. Boada | D. Nagasawa | P. Doel | P. Melchior28 | The DES Collaboration | M. C. Kind | A. C. Rosell | D. Nagasawa | P. Doel | N. Mondrik | A. Roodman | J. Marshall | C. Miller | T. Li | H. Lin | R. Smith | H. Lin | T. Li | R. C. Smith

[1]  Xavier Bonfils,et al.  A rocky planet transiting a nearby low-mass star , 2015, Nature.

[2]  A. Riess,et al.  SUPERCAL: CROSS-CALIBRATION OF MULTIPLE PHOTOMETRIC SYSTEMS TO IMPROVE COSMOLOGICAL MEASUREMENTS WITH TYPE Ia SUPERNOVAE , 2015, 1508.05361.

[3]  J. Frieman,et al.  The LMC geometry and outer stellar populations from early DES data , 2015, 1502.05050.

[4]  Bingqiu Chen,et al.  STELLAR COLOR REGRESSION: A SPECTROSCOPY-BASED METHOD FOR COLOR CALIBRATION TO A FEW MILLIMAGNITUDE ACCURACY AND THE RECALIBRATION OF STRIPE 82 , 2014, 1412.1231.

[5]  Florian Kerber,et al.  All-sky homogeneity of precipitable water vapour over Paranal , 2014, Astronomical Telescopes and Instrumentation.

[6]  Ž. Ivezić,et al.  ALL-WEATHER CALIBRATION OF WIDE-FIELD OPTICAL AND NIR SURVEYS , 2013, 1312.1916.

[7]  C. Tao,et al.  Spectrophotometric time series of SN 2011fe from the Nearby Supernova Factory , 2013, 1302.1292.

[8]  K. Schahmaneche,et al.  Improved Photometric Calibration of the SNLS and the SDSS Supernova Surveys , 2012, 1212.4864.

[9]  J. Mohr,et al.  THE BLANCO COSMOLOGY SURVEY: DATA ACQUISITION, PROCESSING, CALIBRATION, QUALITY DIAGNOSTICS, AND DATA RELEASE , 2012, 1204.1210.

[10]  T. Grav,et al.  PHOTOMETRIC CALIBRATION OF THE FIRST 1.5 YEARS OF THE PAN-STARRS1 SURVEY , 2012, 1201.2208.

[11]  Michael S. Bessell,et al.  Spectrophotometric Libraries, Revised Photonic Passbands, and Zero Points for UBVRI, Hipparcos, and Tycho Photometry , 2011, 1112.2698.

[12]  D. Wittman,et al.  Ubercalibration of the Deep Lens Survey , 2011, 1111.2058.

[13]  Cullen H. Blake,et al.  Measuring NIR Atmospheric Extinction Using a Global Positioning System Receiver , 2011, 1109.6703.

[14]  Christopher W. Stubbs,et al.  PRECISION DETERMINATION OF ATMOSPHERIC EXTINCTION AT OPTICAL AND NEAR-INFRARED WAVELENGTHS , 2010 .

[15]  T. Prochaska,et al.  Spectrophotometric calibration system for DECam , 2010, Other Conferences.

[16]  Mamoru Doi,et al.  PHOTOMETRIC RESPONSE FUNCTIONS OF THE SLOAN DIGITAL SKY SURVEY IMAGER , 2010, 1002.3701.

[17]  Donald W. Sweeney,et al.  LSST Science Book, Version 2.0 , 2009, 0912.0201.

[18]  C. Stubbs,et al.  STELLAR LOCUS REGRESSION: ACCURATE COLOR CALIBRATION AND THE REAL-TIME DETERMINATION OF GALAXY CLUSTER PHOTOMETRIC REDSHIFTS , 2009, 0903.5302.

[19]  Christopher W. Stubbs,et al.  Toward More Precise Survey Photometry for PanSTARRS and LSST: Measuring Directly the Optical Transmission Spectrum of the Atmosphere , 2007, 0708.1364.

[20]  S. Roweis,et al.  An Improved Photometric Calibration of the Sloan Digital Sky Survey Imaging Data , 2007, astro-ph/0703454.

[21]  Zeljko Ivezic,et al.  Sloan Digital Sky Survey Standard Star Catalog for Stripe 82: The Dawn of Industrial 1% Optical Photometry , 2007, astro-ph/0703157.

[22]  M. Sullivan,et al.  Photometric calibration of the Supernova Legacy Survey fields , 2006, astro-ph/0610397.

[23]  Oleg Dubovik,et al.  Angstrom exponent and bimodal aerosol size distributions , 2006 .

[24]  Christopher W. Stubbs,et al.  Toward 1% Photometry: End-to-End Calibration of Astronomical Telescopes and Detectors , 2006, astro-ph/0604285.

[25]  B. Garilli,et al.  Accurate photometric redshifts for the CFHT legacy survey calibrated using the VIMOS VLT deep survey , 2006, astro-ph/0603217.

[26]  Pierre Bergeron,et al.  Calibration of Synthetic Photometry Using DA White Dwarfs , 2005 .

[27]  Bernhard Mayer,et al.  Atmospheric Chemistry and Physics Technical Note: the Libradtran Software Package for Radiative Transfer Calculations – Description and Examples of Use , 2022 .

[28]  P. Stetson Homogeneous Photometry. IV. On the Standard Sequence in the Globular Cluster NGC 2419 , 2005, astro-ph/0503393.

[29]  A. Szalay,et al.  SDSS data management and photometric quality assessment , 2004, astro-ph/0410195.

[30]  Anu,et al.  The Oxford–Dartmouth Thirty Degree Survey – I. Observations and calibration of a wide-field multiband survey , 2004, astro-ph/0405208.

[31]  C. Wolf,et al.  Object classification in astronomical multi-color surveys , 2000, astro-ph/0010092.

[32]  P. Stetson Homogeneous Photometry for Star Clusters and Resolved Galaxies. II. Photometric Standard Stars , 2000, astro-ph/0004144.

[33]  A. Pickles A Stellar Spectral Flux Library: 1150–25000 Å , 1998 .

[34]  E. Bertin,et al.  SExtractor: Software for source extraction , 1996 .

[35]  L. Miller,et al.  An imaging K-band survey - I: The catalogue, star and galaxy counts , 1993, astro-ph/9307022.

[36]  Arlo U. Landolt,et al.  UBVRI Photometric Standard Stars in the Magnitude Range 11 , 1992 .

[37]  A. Henden,et al.  Astronomical Photometry: A Text and Handbook for the Advanced Amateur and Professional Astronomer , 1990 .

[38]  D. Weedman,et al.  Colors and magnitudes predicted for high redshift galaxies , 1980 .

[39]  J. Hansen,et al.  Light scattering in planetary atmospheres , 1974 .

[40]  Brinkmann,et al.  SDSS Standard Star Catalog for Stripe 82: the Dawn of Industrial 1% Optical Photometry , 2007 .