暂无分享,去创建一个
[1] David P. Woodruff,et al. Low rank approximation and regression in input sparsity time , 2012, STOC '13.
[2] Tamás Sarlós,et al. Improved Approximation Algorithms for Large Matrices via Random Projections , 2006, 2006 47th Annual IEEE Symposium on Foundations of Computer Science (FOCS'06).
[3] Zizhong Chen,et al. Condition Numbers of Gaussian Random Matrices , 2005, SIAM J. Matrix Anal. Appl..
[4] James Demmel,et al. Low Rank Approximation of a Sparse Matrix Based on LU Factorization with Column and Row Tournament Pivoting , 2018, SIAM J. Sci. Comput..
[5] Nathan Halko,et al. Finding Structure with Randomness: Probabilistic Algorithms for Constructing Approximate Matrix Decompositions , 2009, SIAM Rev..
[6] Ming Gu,et al. Subspace Iteration Randomization and Singular Value Problems , 2014, SIAM J. Sci. Comput..
[7] Huy L. Nguyen,et al. OSNAP: Faster Numerical Linear Algebra Algorithms via Sparser Subspace Embeddings , 2012, 2013 IEEE 54th Annual Symposium on Foundations of Computer Science.
[8] M. Gu,et al. Strong rank revealing LU factorizations , 2003 .
[9] David P. Woodru. Sketching as a Tool for Numerical Linear Algebra , 2014 .
[10] Christos Boutsidis,et al. Improved Matrix Algorithms via the Subsampled Randomized Hadamard Transform , 2012, SIAM J. Matrix Anal. Appl..
[11] J. Bourgain,et al. Toward a unified theory of sparse dimensionality reduction in Euclidean space , 2015 .
[12] James Demmel,et al. Fast linear algebra is stable , 2006, Numerische Mathematik.
[13] Petros Drineas,et al. CUR matrix decompositions for improved data analysis , 2009, Proceedings of the National Academy of Sciences.
[14] Xiaoye S. Li,et al. Using Random Butterfly Transformations to Avoid Pivoting in Sparse Direct Methods , 2014, VECPAR.
[15] Ioana Dumitriu. Smallest eigenvalue distributions for two classes of $\beta$-Jacobi ensembles , 2010 .
[16] P. Massart,et al. Adaptive estimation of a quadratic functional by model selection , 2000 .
[17] Charles R. Johnson,et al. Matrix analysis , 1985, Statistical Inference for Engineers and Data Scientists.
[18] Ming Gu,et al. Efficient Algorithms for Computing a Strong Rank-Revealing QR Factorization , 1996, SIAM J. Sci. Comput..
[19] Cameron Musco,et al. Randomized Block Krylov Methods for Stronger and Faster Approximate Singular Value Decomposition , 2015, NIPS.
[20] David P. Woodruff. Sketching as a Tool for Numerical Linear Algebra , 2014, Found. Trends Theor. Comput. Sci..
[21] J. Demmel,et al. An inverse free parallel spectral divide and conquer algorithm for nonsymmetric eigenproblems , 1997 .
[22] Tiefeng Jiang,et al. Maxima of entries of Haar distributed matrices , 2005 .