Automated Detection of Unusual Events on Stairs

This paper presents a method for automatically detecting and recognising unusual events on stairs from video data. The motivation is to provide a tool for biomedical researchers to rapidly find and analyse the events of interest within large quantities of video data. Our system identifies potential sequences containing anomalies, and reduces the amount of data that needs to be searched by a human. We apply adaptive background subtraction to segment the person using the stairs, followed by affine flow computation over the segmented region. A hidden Markov model (HMM) is then used to analyse the temporal progression of the affine features. A single HMM is trained on sequences of normal stair use, and a threshold is used to detect unusual events in new data. We also introduce a temporal segmentation method using a conditional random field (CRF). We demonstrate our system on a data set with three persons.

[1]  Michael Isard,et al.  Learning and Classification of Complex Dynamics , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[2]  Thad Starner,et al.  Visual Recognition of American Sign Language Using Hidden Markov Models. , 1995 .

[3]  Dariu Gavrila,et al.  The Visual Analysis of Human Movement: A Survey , 1999, Comput. Vis. Image Underst..

[4]  Jacob A. Hyman Computer Vision Based People Tracking for Motivating Behavior in Public Spaces , 2003 .

[5]  G. G. Stokes "J." , 1890, The New Yale Book of Quotations.

[6]  David C. Hogg,et al.  Learning Variable-Length Markov Models of Behavior , 2001, Comput. Vis. Image Underst..

[7]  Henry A. Kautz,et al.  Learning and inferring transportation routines , 2004, Artif. Intell..

[8]  Michael Isard,et al.  CONDENSATION—Conditional Density Propagation for Visual Tracking , 1998, International Journal of Computer Vision.

[9]  L. Baum,et al.  An inequality and associated maximization technique in statistical estimation of probabilistic functions of a Markov process , 1972 .

[10]  Alex Pentland,et al.  Invariant features for 3-D gesture recognition , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[11]  Thomas B. Moeslund,et al.  A Survey of Computer Vision-Based Human Motion Capture , 2001, Comput. Vis. Image Underst..

[12]  M. Alex O. Vasilescu Human motion signatures: analysis, synthesis, recognition , 2002, Object recognition supported by user interaction for service robots.

[13]  Alex Mihailidis,et al.  An intelligent emergency response system: preliminary development and testing of automated fall detection , 2005, Journal of telemedicine and telecare.

[14]  James W. Davis,et al.  The Recognition of Human Movement Using Temporal Templates , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[15]  Andrew McCallum,et al.  Conditional Random Fields: Probabilistic Models for Segmenting and Labeling Sequence Data , 2001, ICML.

[16]  John A. Templer,et al.  The Staircase: History and Theories@@@The Staircase: Studies of Hazards, Falls, and Safer Design , 1994 .

[17]  James J. Little,et al.  A Boosted Particle Filter: Multitarget Detection and Tracking , 2004, ECCV.

[18]  N. Gordon,et al.  Novel approach to nonlinear/non-Gaussian Bayesian state estimation , 1993 .

[19]  Murray Mp,et al.  Gait as a total pattern of movement. , 1967 .

[20]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[21]  Patrick Pérez,et al.  Color-Based Probabilistic Tracking , 2002, ECCV.

[22]  M. P. Murray Gait as a total pattern of movement. , 1967, American journal of physical medicine.

[23]  Bill Triggs,et al.  Histograms of oriented gradients for human detection , 2005, 2005 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (CVPR'05).

[24]  Aaron F. Bobick,et al.  Fast Lighting Independent Background Subtraction , 2004, International Journal of Computer Vision.

[25]  Dorin Comaniciu,et al.  Real-time tracking of non-rigid objects using mean shift , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[26]  Michael J. Black,et al.  The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields , 1996, Comput. Vis. Image Underst..

[27]  John Archea,et al.  Guidelines for stair safety , 1979 .

[28]  T. Masud,et al.  Epidemiology of falls. , 2001, Age and ageing.

[29]  Anthony G. Cohn,et al.  Constructing qualitative event models automatically from video input , 2000, Image Vis. Comput..

[30]  Neil J. Gordon,et al.  A tutorial on particle filters for online nonlinear/non-Gaussian Bayesian tracking , 2002, IEEE Trans. Signal Process..

[31]  Michael Isard,et al.  A mixed-state condensation tracker with automatic model-switching , 1998, Sixth International Conference on Computer Vision (IEEE Cat. No.98CH36271).

[32]  W. Eric L. Grimson,et al.  Using adaptive tracking to classify and monitor activities in a site , 1998, Proceedings. 1998 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No.98CB36231).

[33]  W. Eric L. Grimson,et al.  Adaptive background mixture models for real-time tracking , 1999, Proceedings. 1999 IEEE Computer Society Conference on Computer Vision and Pattern Recognition (Cat. No PR00149).

[34]  Stefano Soatto,et al.  Recognition of human gaits , 2001, Proceedings of the 2001 IEEE Computer Society Conference on Computer Vision and Pattern Recognition. CVPR 2001.

[35]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Proceedings of the Second International Conference on Automatic Face and Gesture Recognition.

[36]  Jesse Hoey,et al.  Representation and recognition of complex human motion , 2000, Proceedings IEEE Conference on Computer Vision and Pattern Recognition. CVPR 2000 (Cat. No.PR00662).

[37]  J. Little,et al.  Recognizing People by Their Gait: The Shape of Motion , 1998 .

[38]  Michael Isard,et al.  BraMBLe: a Bayesian multiple-blob tracker , 2001, Proceedings Eighth IEEE International Conference on Computer Vision. ICCV 2001.

[39]  J. Cutting,et al.  Recognizing friends by their walk: Gait perception without familiarity cues , 1977 .

[40]  Sudeep Sarkar,et al.  The humanID gait challenge problem: data sets, performance, and analysis , 2005, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[41]  Edward H. Adelson,et al.  Analyzing and recognizing walking figures in XYT , 1994, 1994 Proceedings of IEEE Conference on Computer Vision and Pattern Recognition.

[42]  Ashish Kapoor,et al.  A real-time head nod and shake detector , 2001, PUI '01.

[43]  Matthew Brand,et al.  Discovery and Segmentation of Activities in Video , 2000, IEEE Trans. Pattern Anal. Mach. Intell..

[44]  Dimitris N. Metaxas,et al.  A framework for motion recognition with applications to American sign language and gait recognition , 2000, Proceedings Workshop on Human Motion.

[45]  Kentaro Toyama,et al.  Wallflower: principles and practice of background maintenance , 1999, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[46]  Alex Pentland,et al.  Coupled hidden Markov models for complex action recognition , 1997, Proceedings of IEEE Computer Society Conference on Computer Vision and Pattern Recognition.

[47]  John K. Tsotsos,et al.  Detecting abnormal gait , 2005, The 2nd Canadian Conference on Computer and Robot Vision (CRV'05).

[48]  Lawrence R. Rabiner,et al.  A tutorial on hidden Markov models and selected applications in speech recognition , 1989, Proc. IEEE.

[49]  Yoshua Bengio,et al.  Markovian Models for Sequential Data , 2004 .

[50]  Alex Pentland,et al.  Pfinder: real-time tracking of the human body , 1996, Other Conferences.

[51]  F. Dellaert,et al.  A Rao-Blackwellized particle filter for EigenTracking , 2004, CVPR 2004.

[52]  Kevin Murphy,et al.  Bayes net toolbox for Matlab , 1999 .

[53]  D. Rubin,et al.  Maximum likelihood from incomplete data via the EM - algorithm plus discussions on the paper , 1977 .