Self-Adaptive Genetic Algorithms with Simulated Binary Crossover

Self-adaptation is an essential feature of natural evolution. However, in the context of function optimization, self-adaptation features of evolutionary search algorithms have been explored mainly with evolution strategy (ES) and evolutionary programming (EP). In this paper, we demonstrate the self-adaptive feature of real-parameter genetic algorithms (GAs) using a simulated binary crossover (SBX) operator and without any mutation operator. The connection between the working of self-adaptive ESs and real-parameter GAs with the SBX operator is also discussed. Thereafter, the self-adaptive behavior of real-parameter GAs is demonstrated on a number of test problems commonly used in the ES literature. The remarkable similarity in the working principle of real-parameter GAs and self-adaptive ESs shown in this study suggests the need for emphasizing further studies on self-adaptive GAs.

[1]  D. Fogel,et al.  A comparison of methods for self-adaptation in evolutionary algorithms. , 1995, Bio Systems.

[2]  Thomas Bäck,et al.  An Overview of Evolutionary Algorithms for Parameter Optimization , 1993, Evolutionary Computation.

[3]  W. Vent,et al.  Rechenberg, Ingo, Evolutionsstrategie — Optimierung technischer Systeme nach Prinzipien der biologischen Evolution. 170 S. mit 36 Abb. Frommann‐Holzboog‐Verlag. Stuttgart 1973. Broschiert , 1975 .

[4]  Kalyanmoy Deb,et al.  Genetic Algorithms, Noise, and the Sizing of Populations , 1992, Complex Syst..

[5]  Isao Ono,et al.  A Real Coded Genetic Algorithm for Function Optimization Using Unimodal Normal Distributed Crossover , 1997, ICGA.

[6]  Hans-Paul Schwefel,et al.  Collective Intelligence in Evolving Systems , 1988 .

[7]  Kalyanmoy Deb,et al.  Real-coded Genetic Algorithms with Simulated Binary Crossover: Studies on Multimodal and Multiobjective Problems , 1995, Complex Syst..

[8]  David E. Goldberg,et al.  Real-coded Genetic Algorithms, Virtual Alphabets, and Blocking , 1991, Complex Syst..

[9]  Kalyanmoy Deb,et al.  A combined genetic adaptive search (GeneAS) for engineering design , 1996 .

[10]  N. Hansen,et al.  Convergence Properties of Evolution Strategies with the Derandomized Covariance Matrix Adaptation: T , 1997 .

[11]  Zbigniew Michalewicz,et al.  Handling Constraints in Genetic Algorithms , 1991, ICGA.

[12]  S. Kobayashi,et al.  Multi-parental extension of the unimodal normal distribution crossover for real-coded genetic algorithms , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[13]  Kalyanmoy Deb,et al.  Simulated Binary Crossover for Continuous Search Space , 1995, Complex Syst..

[14]  Ingo Rechenberg,et al.  Evolutionsstrategie : Optimierung technischer Systeme nach Prinzipien der biologischen Evolution , 1973 .

[15]  H. Beyer,et al.  Some observations on the interaction of recombination and self-adaptation in evolution strategies , 1999, Proceedings of the 1999 Congress on Evolutionary Computation-CEC99 (Cat. No. 99TH8406).

[16]  L. Darrell Whitley,et al.  Serial and Parallel Genetic Algorithms as Function Optimizers , 1993, ICGA.

[17]  Günter Rudolph,et al.  An Evolutionary Algorithm for Integer Programming , 1994, PPSN.

[18]  Thomas Bäck,et al.  The Interaction of Mutation Rate, Selection, and Self-Adaptation Within a Genetic Algorithm , 1992, PPSN.

[19]  Kalyanmoy Deb,et al.  Messy Genetic Algorithms: Motivation, Analysis, and First Results , 1989, Complex Syst..

[20]  Hans-Paul Schwefel,et al.  Where Elitists Start Limping Evolution Strategies at Ridge Functions , 1998, PPSN.

[21]  Michael Herdy,et al.  Reproductive Isolation as Strategy Parameter in Hierarichally Organized Evolution Strategies , 1992, PPSN.

[22]  C. G. Shaefer,et al.  The ARGOT Strategy: Adaptive Representation Genetic Optimizer Technique , 1987, ICGA.

[23]  Hillol Kargupta,et al.  The Gene Expression Messy Genetic Algorithm , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[24]  Donald R. Houser,et al.  A ROBUST OPTIMIZATION PROCEDURE WITH VARIATIONS ON DESIGN VARIABLES AND CONSTRAINTS , 1995 .

[25]  Nikolaus Hansen,et al.  Adapting arbitrary normal mutation distributions in evolution strategies: the covariance matrix adaptation , 1996, Proceedings of IEEE International Conference on Evolutionary Computation.

[26]  Ingo Rechenberg,et al.  Evolutionsstrategie '94 , 1994, Werkstatt Bionik und Evolutionstechnik.

[27]  Shigenobu Kobayashi,et al.  A Real-Coded Genetic Algorithm for Function Optimization Using the Unimodal Normal Distribution Crossover , 1999 .

[28]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: The (, )-Theory , 1994, Evolutionary Computation.

[29]  N. L. Johnson,et al.  Continuous Univariate Distributions. , 1995 .

[30]  S. Kobayashi,et al.  Theoretical analysis of the unimodal normal distribution crossover for real-coded genetic algorithms , 1998, 1998 IEEE International Conference on Evolutionary Computation Proceedings. IEEE World Congress on Computational Intelligence (Cat. No.98TH8360).

[31]  Alden H. Wright,et al.  Genetic Algorithms for Real Parameter Optimization , 1990, FOGA.

[32]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: On the Benefits of Sex the (/, ) Theory , 1995, Evolutionary Computation.

[33]  Kalyanmoy Deb,et al.  A flexible optimization procedure for mechanical component design based on genetic adaptive search , 1998 .

[34]  David B. Fogel,et al.  An Evolutionary Programming Approach to Self-Adaptation on Finite State Machines , 1995, Evolutionary Programming.

[35]  Roger Weinberg,et al.  Computer simulation of a living cell , 1970 .

[36]  Hillol Kargupta,et al.  The gene expression messy genetic algorithm for financial applications , 1996, IEEE/IAFE 1996 Conference on Computational Intelligence for Financial Engineering (CIFEr).

[37]  Hans-Georg Beyer,et al.  Toward a Theory of Evolution Strategies: Self-Adaptation , 1995, Evolutionary Computation.

[38]  G. Harik Learning gene linkage to efficiently solve problems of bounded difficulty using genetic algorithms , 1997 .