A Machine Learning Based Approach to Fiber Tractography Using Classifier Voting
暂无分享,去创建一个
Peter F. Neher | Klaus H. Maier-Hein | Michael Götz | Christian Weber | Tobias Norajitra | M. Götz | Klaus Maier-Hein | P. Neher | C. Weber | T. Norajitra
[1] Antonio Criminisi,et al. Image Quality Transfer via Random Forest Regression: Applications in Diffusion MRI , 2014, MICCAI.
[2] Bram Stieltjes,et al. Fiberfox: Facilitating the creation of realistic white matter software phantoms , 2014, Magnetic resonance in medicine.
[3] M Nolden,et al. MITK Diffusion Imaging , 2012, Methods of Information in Medicine.
[4] Thomas Schultz,et al. Learning a Reliable Estimate of the Number of Fiber Directions in Diffusion MRI , 2012, MICCAI.
[5] Maxime Descoteaux,et al. Tractometer: Towards validation of tractography pipelines , 2013, Medical Image Anal..
[6] Maxime Descoteaux,et al. Quantitative evaluation of 10 tractography algorithms on a realistic diffusion MR phantom , 2011, NeuroImage.
[7] Alan Connelly,et al. MRtrix: Diffusion tractography in crossing fiber regions , 2012, Int. J. Imaging Syst. Technol..