Dye-Sensitized Photocells with Meso-Macroporous TiO2 Film Electrodes

Meso-macroporous anatase TiO2 films, described in a previous work, have been used for the first time as electrodes for dye-sensitized photoelectrochemical cells. The mesopores provide a large surface area that is favorable for efficient light absorption, and the macropores serve as pathways for diffusion of electroactive agents (EAAs). Although the introduction of macropores led to an improvement in the magnitude of the short-circuit photocurrent (Jsc), electron recombination on the SnO2 substrate surface at the bottom of the macropores deteriorated the open-circuit voltage (Voc). This unfavorable process has been depressed by applying a thin (200 to 300 nm) TiO2 film between the meso-macroporous film and the SnO2 substrate, to obtain finally a dye-sensitized photoelectrode with a Voc nearly identical with, and a Jsc superior to, the values for a conventional porous TiO2 film electrode.

[1]  Michael Grätzel,et al.  Morphology and Adsorbate Dependence of Ionic Transport in Dye Sensitized Mesoporous TiO2 Films , 1998 .

[2]  A. J. Frank,et al.  Dye-Sensitized TiO2 Solar Cells: Structural and Photoelectrochemical Characterization of Nanocrystalline Electrodes Formed from the Hydrolysis of TiCl4 , 1999 .

[3]  A. Stein,et al.  Synthesis of macroporous minerals with highly ordered three-dimensional arrays of spheroidal voids , 1998, Science.

[4]  Arthur J. Frank,et al.  CHARGE RECOMBINATION IN DYE-SENSITIZED NANOCRYSTALLINE TIO2 SOLAR CELLS , 1997 .

[5]  Vos,et al.  Preparation of photonic crystals made of air spheres in titania , 1998, Science.

[6]  Anders Hagfeldt,et al.  Light-Induced Redox Reactions in Nanocrystalline Systems , 1995 .

[7]  Josef Salbeck,et al.  Solid-state dye-sensitized mesoporous TiO2 solar cells with high photon-to-electron conversion efficiencies , 1998, Nature.

[8]  M. Antonietti,et al.  Porous ’coral-like‘ TiO2 structures produced by templating polymer gels. , 1998 .

[9]  H. Pettersson,et al.  The Performance and Stability of Ambient Temperature Molten Salts for Solar Cell Applications , 1996 .

[10]  Brian A. Gregg,et al.  The Photovoltage-Determining Mechanism in Dye-Sensitized Solar Cells , 2000 .

[11]  F. Willig,et al.  Origin of Photovoltage and Photocurrent in the Nanoporous Dye-Sensitized Electrochemical Solar Cell , 1999 .

[12]  Sten-Eric Lindquist,et al.  The obstructed diffusion of the I3- ion in mesoscopic TiO2 membranes , 1998 .

[13]  M. Grätzel,et al.  A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films , 1991, Nature.

[14]  S. Ito,et al.  Fabrication and Characterization of Meso-Macroporous Anatase TiO2 Films , 2000 .

[15]  O. Velev,et al.  Porous silica via colloidal crystallization , 1997, Nature.

[16]  K. Kalyanasundaram,et al.  Artificial photosynthesis: Efficient dye-sensitized photoelectrochemical cells for direct conversion of visible light to electricity , 1994 .

[17]  M. Grätzel,et al.  Charge carrier separation and charge transport in nanocrystalline junctions , 1994 .

[18]  M. Antonietti,et al.  Polymer gel template for porous TiO2 production , 1998 .

[19]  A. Meyer,et al.  The photovoltaic stability of, bis(isothiocyanato)rlutheniurn(II)‐bis‐2, 2′bipyridine‐4, 4′‐dicarboxylic acid and related sensitizers , 1997 .

[20]  Mohammad Khaja Nazeeruddin,et al.  Conversion of light to electricity by cis-X2bis(2,2'-bipyridyl-4,4'-dicarboxylate)ruthenium(II) charge-transfer sensitizers (X = Cl-, Br-, I-, CN-, and SCN-) on nanocrystalline titanium dioxide electrodes , 1993 .

[21]  Prashant V. Kamat,et al.  Photoelectrochemistry of Composite Semiconductor Thin Films. Photosensitization of the SnO 2 /TiO 2 Coupled System with a Ruthenium Polypyridyl Complex , 1998 .