Artificial compressibility, characteristics-based schemes for variable density, incompressible, multi-species flows. Part I. Derivation of different formulations and constant density limit

The paper presents various formulations of characteristics-based schemes in the framework of the artificial-compressibility method for variable-density incompressible flows. In contrast to constant-density incompressible flows, where the characteristics-based variables reconstruction leads to a single formulation, in the case of variable density flows three different schemes can be obtained henceforth labeled as: transport, conservative and hybrid schemes. The conservative scheme results in pseudo-compressibility terms in the (multi-species) density reconstruction. It is shown that in the limit of constant density, the transport scheme becomes the (original) characteristics-based scheme for incompressible flows, but the conservative and hybrid schemes lead to a new characteristics-based variant for constant density flows. The characteristics-based schemes are combined with second and third-order interpolation for increasing the computational accuracy locally at the cell faces of the control volume. Numerical experiments for constant density flows reveal that all the characteristics-based schemes result in the same flow solution, but they exhibit different convergence behavior. The multigrid implementation and numerical studies for variable density flows are presented in Part II of this study.

[1]  P. Colella,et al.  A Conservative Adaptive Projection Method for the Variable Density Incompressible Navier-Stokes Equations , 1998 .

[2]  George M. Whitesides,et al.  Design Analysis and 3D Measurement of Diffusive Broadening in a Y-mixer , 2000 .

[3]  W. Rider,et al.  High-Resolution Methods for Incompressible and Low-Speed Flows , 2004 .

[4]  John B. Bell,et al.  An Adaptive Projection Method for Unsteady, Low-Mach Number Combustion , 1998 .

[5]  G. Tryggvason,et al.  Direct Numerical Simulations of Multiphase Flows , 2001 .

[6]  O. Iliev,et al.  A Nonlinear Multigrid Method for the Three-Dimensional Incompressible Navier-Stokes Equations , 1998 .

[7]  Evgeniy Shapiro,et al.  HIGH-RESOLUTION METHODS F OR INCOMPRESSIBLE, COMPRESSIBLE, AND LOW-SPEED VARIABLE DENSITY FLOWS , 2004 .

[8]  P. Wesseling Principles of Computational Fluid Dynamics , 2000 .

[9]  V. Vesovic Predicting the Viscosity of Natural Gas , 2001 .

[10]  J. Bell,et al.  A Second-Order Projection Method for Variable- Density Flows* , 1992 .

[11]  John W. Goodrich,et al.  Unsteady solution of incompressible Navier-Stokes equations , 1988 .

[12]  D. Dandy,et al.  A numerical stable method for integration of the multicomponent species diffusion equations , 2001 .

[13]  P Yager,et al.  Theoretical analysis of molecular diffusion in pressure-driven laminar flow in microfluidic channels. , 2001, Biophysical journal.

[14]  Albrecht Eberle,et al.  Characteristic flux averaging approach to the solution of Euler's equations , 1987 .

[15]  G. Whitesides,et al.  Experimental and theoretical scaling laws for transverse diffusive broadening in two-phase laminar flows in microchannels , 2000 .

[16]  P. Colella,et al.  A second-order projection method for the incompressible navier-stokes equations , 1989 .

[17]  Chih-Ming Ho,et al.  Deformation of DNA molecules by hydrodynamic focusing , 2003, Journal of Fluid Mechanics.

[18]  John B. Bell,et al.  A Numerical Method for the Incompressible Navier-Stokes Equations Based on an Approximate Projection , 1996, SIAM J. Sci. Comput..

[19]  F. Anselmet,et al.  Variable Density Fluid Turbulence: Preamble , 2002 .

[20]  Manuel D. Salas,et al.  Barriers and Challenges in Computational Fluid Dynamics , 1998 .

[21]  S. Dalziel,et al.  Self-similarity and internal structure of turbulence induced by Rayleigh–Taylor instability , 1999, Journal of Fluid Mechanics.

[22]  S. Zaleski,et al.  DIRECT NUMERICAL SIMULATION OF FREE-SURFACE AND INTERFACIAL FLOW , 1999 .

[23]  A. Chorin A Numerical Method for Solving Incompressible Viscous Flow Problems , 1997 .

[24]  Prediction of flow instabilities and transition using high-resolution methods , 2004 .

[25]  Edward L Cussler,et al.  Diffusion: Mass Transfer in Fluid Systems , 1984 .

[26]  Erik Dick,et al.  A flux-vector splitting method for steady Navier-Stokes equations , 1988 .

[27]  H. Okamoto,et al.  Stability of flow in a channel with a suddenly expanded part , 1996 .

[28]  Chih Hao Chang,et al.  The capturing of free surfaces in incompressible multi-fluid flows , 2000 .

[29]  D. B. Kothe,et al.  Accurate and robust methods for variable density incompressible flows with discontinuities , 1998 .

[30]  J. Mizushima,et al.  Transitions and instabilities of flow in a symmetric channel with a suddenly expanded and contracted part , 2001, Journal of Fluid Mechanics.

[31]  S. Osher,et al.  Efficient implementation of essentially non-oscillatory shock-capturing schemes,II , 1989 .

[32]  L. Quartapelle,et al.  A projection FEM for variable density incompressible flows , 2000 .

[33]  Patrick Chassaing,et al.  Variable Density Fluid Turbulence , 2002 .

[34]  Charles Merkle,et al.  Time-accurate unsteady incompressible flow algorithms based on artificial compressibility , 1987 .

[35]  Dimitris Drikakis,et al.  Embedded turbulence model in numerical methods for hyperbolic conservation laws , 2002 .

[36]  C. H. Liu,et al.  Vectorizable Implicit Algorithms for the Flux-Difference Split, Three-Dimensional Navier-Stokes Equations , 1988 .

[37]  Dochan Kwak,et al.  A three-dimensional incompressible Navier-Stokes flow solver using primitive variables , 1986 .

[38]  Ling Qian,et al.  Cartesian Cut Cell Two-Fluid Solver for Hydraulic Flow Problems , 2003 .

[39]  TRANSPORT PROPERTIES OF FLUID MIXTURES AT HIGH PRESSURES AND TEMPERATURES. APPLICATION TO THE DETONATION PRODUCTS OF HMX , 2002 .

[40]  R. Courant,et al.  Methods of Mathematical Physics , 1962 .

[41]  P. Yager,et al.  Microfluidic Diffusion-Based Separation and Detection , 1999, Science.

[42]  Evgeniy Shapiro,et al.  Artificial compressibility, characteristics-based schemes for variable-density, incompressible, multispecies flows: Part II. Multigrid implementation and numerical tests , 2005 .

[43]  Dimitris E. Papantonis,et al.  A characteristic-based method for incompressible flows , 1994 .

[44]  M. Phillips,et al.  Supernova 1987 A , 1989 .

[45]  Stuart E. Rogers,et al.  Upwind differencing scheme for the time-accurate incompressible Navier-Stokes equations , 1990 .

[46]  G. Batchelor,et al.  An Introduction to Fluid Dynamics , 1968 .

[47]  Bernardus J. Geurts,et al.  Turbulent flow computation , 2004 .

[48]  Uwe Riedel A Finite Volume Scheme on Unstructured Grids for Stiff Chemically Reacting Flows , 1998 .

[49]  D. Hänel,et al.  A dual time-stepping method for 3-D, viscous, incompressible vortex flows , 1993 .

[50]  Jean-Luc Guermond,et al.  Approximation of variable density incompressible flows by means of finite elements and finite volumes , 2001 .

[51]  E. Toro Shock-Capturing Methods for Free-Surface Shallow Flows , 2001 .

[52]  John Lindl,et al.  Progress toward Ignition and Burn Propagation in Inertial Confinement Fusion , 1992 .

[53]  Sukumar Chakravarthy,et al.  Unified formulation for incompressible flows , 1989 .

[54]  E. Puckett,et al.  A High-Order Projection Method for Tracking Fluid Interfaces in Variable Density Incompressible Flows , 1997 .

[55]  S. Menon,et al.  AN UNSTEADY INCOMPRESSIBLE NAVIER-STOKES SOLVER FOR LARGE EDDY SIMULATION OF TURBULENT FLOWS , 1999 .

[56]  Stuart E. Rogers,et al.  Steady and unsteady solutions of the incompressible Navier-Stokes equations , 1991 .

[57]  P. Baines,et al.  Topographic Effects in Stratified Flows , 1995 .

[58]  Gretar Tryggvason,et al.  Computations of multi-fluid flows , 1992 .

[59]  Robert S. Wegeng,et al.  MICROCHANNEL DEVICES FOR EFFICIENT CONTACTING OF LIQUIDS IN SOLVENT EXTRACTION , 1999 .