Standoff Detection of Weapons and Contraband in the 100 GHz to 1 THz Region

The techniques and technologies currently being investigated to detect weapons and contraband concealed on persons under clothing are reviewed. The basic phenomenology of the atmosphere and materials that must be understood in order to realize such a system are discussed. The component issues and architectural designs needed to realize systems are outlined. Some conclusions with respect to further technology developments are presented.

[1]  William D. Goodhue,et al.  Terahertz behavior of optical components and common materials , 2006, SPIE Defense + Commercial Sensing.

[2]  Christopher A. Martin,et al.  Real-time wide-field-of-view passive millimeter-wave imaging , 2002, SPIE Defense + Commercial Sensing.

[3]  Robert E. Miles,et al.  Optical properties of tissue measured using terahertz-pulsed imaging , 2003, SPIE Medical Imaging.

[4]  A. Tessmann,et al.  220-GHz metamorphic HEMT amplifier MMICs for high-resolution imaging applications , 2005, IEEE Journal of Solid-State Circuits.

[5]  Eugene Serabyn,et al.  Atmospheric transmission at microwaves (ATM): an improved model for millimeter/submillimeter applications , 2001 .

[6]  Gordon N. Sinclair,et al.  Terahertz Detection of Illegal Objects , 2007 .

[7]  W. R. Tribe,et al.  People screening using terahertz technology (Invited Paper) , 2005, SPIE Defense + Commercial Sensing.

[8]  Michael S. Shur,et al.  Terahertz sensing technology , 2009, GLSVLSI '09.

[9]  Daniel W. van der Weide,et al.  Spectroscopy with electronic terahertz techniques , 1999, Industrial Lasers and Inspection.

[10]  Sean G. O'Brien,et al.  Development of a terahertz short range imaging model , 2006, SPIE Defense + Commercial Sensing.

[11]  E. Brown,et al.  Millimeter-wave, terahertz, and mid-infrared transmissionthrough common clothing , 2004 .

[12]  Arthur C. Gossard,et al.  First MMW characterization of ErAs/InAlGaAs/InP semimetal-semiconductor-Schottky diode (S3) detectors for passive millimeter-wave and infrared imaging , 2005, SPIE Defense + Commercial Sensing.

[13]  Arttu Luukanen,et al.  Terahertz active direct detection imagers , 2004, SPIE Defense + Commercial Sensing.

[14]  Steve Moyer,et al.  Concealed weapon identification using terahertz imaging sensors , 2006, SPIE Defense + Commercial Sensing.

[15]  P. Siegel Terahertz Technology , 2001 .

[16]  C. J. Gibbins Improved algorithms for the determination of specific attenuation at sea level by dry air and water vapor, in the frequency range 1–350 GHz , 1986 .

[17]  Hans J. Liebe,et al.  MPM—An atmospheric millimeter-wave propagation model , 1989 .

[18]  Xiang Zhang,et al.  THz wave standoff detection of explosive materials , 2006, SPIE Defense + Commercial Sensing.

[19]  D. H. Martin,et al.  Polarised interferometric spectrometry for the millimetre and submillimetre spectrum , 1970 .

[20]  M. Micovic,et al.  High performance MMICs with submillimeter wave InP-based HEMTs , 2000, Conference Proceedings. 2000 International Conference on Indium Phosphide and Related Materials (Cat. No.00CH37107).

[21]  Dwight L. Woolard,et al.  Terahertz Frequency Sensing and Imaging: A Time of Reckoning Future Applications? , 2005, Proceedings of the IEEE.

[22]  Eddie L. Jacobs,et al.  Active and passive millimeter- and sub-millimeter-wave imaging , 2005, SPIE Security + Defence.

[23]  W. R. Tribe,et al.  Security applications of terahertz technology , 2003, SPIE Defense + Commercial Sensing.

[24]  H.B. Wallace,et al.  Imaging Through the Atmosphere at Terahertz Frequencies , 2007, 2007 IEEE/MTT-S International Microwave Symposium.

[25]  Fawwaz T. Ulaby,et al.  Special issue on terahertz technology foreword , 1991 .

[26]  Robert K. Crane,et al.  Prediction of Attenuation by Rain , 1980, IEEE Trans. Commun..

[27]  Michael C. Kemp,et al.  Recent developments in people screening using terahertz technology: seeing the world through terahertz eyes , 2006, SPIE Defense + Commercial Sensing.

[28]  Keith A. Krapels,et al.  Terahertz imaging performance model for concealed weapon identification , 2004, SPIE Security + Defence.

[29]  J. M. Chamberlain,et al.  Scattering in THz imaging , 2005, SPIE Security + Defence.

[30]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 2017, 1708.09761.

[31]  G. Swenson,et al.  Interferometry and Synthesis in Radio Astronomy , 1986 .

[32]  F. X. Kneizys,et al.  FASCODE - Fast Atmospheric Signature Code (Spectral Transmittance and Radiance) , 1978 .

[33]  J. Federici,et al.  THz imaging and sensing for security applications—explosives, weapons and drugs , 2005 .

[34]  Debabani Choudhury,et al.  Unamplified direct detection sensor for passive millimeter wave imaging , 2006, SPIE Defense + Commercial Sensing.

[35]  P. Taday,et al.  Detection and identification of explosives using terahertz pulsed spectroscopic imaging , 2005 .

[36]  Jeffrey Barber,et al.  Temperature-dependent far-infrared spectra of single crystals of high explosives using terahertz time-domain spectroscopy. , 2005, The journal of physical chemistry. A.

[37]  A. Luukanen,et al.  An array of antenna-coupled superconducting microbolometers for passive indoors real-time THz imaging , 2006, SPIE Defense + Commercial Sensing.

[38]  James W. Lamb,et al.  Miscellaneous data on materials for millimetre and submillimetre optics , 1996 .

[39]  Jason C. Dickinson,et al.  Terahertz imaging of subjects with concealed weapons , 2006, SPIE Defense + Commercial Sensing.

[40]  Peter R. Coward,et al.  Development of an illumination chamber for indoor millimeter-wave imaging , 2003, SPIE Defense + Commercial Sensing.

[41]  Neil A. Salmon Scene simulation for passive and active millimetre- and submillimetre-wave imaging for security scanning and medical applications , 2004, SPIE Security + Defence.

[42]  Robert E. Miles,et al.  Terahertz frequency detection and identification of materials and objects , 2007 .

[43]  A. Fung,et al.  Microwave Remote Sensing Active and Passive-Volume III: From Theory to Applications , 1986 .

[44]  Thomas E. Hall,et al.  Three-dimensional millimeter-wave imaging for concealed weapon detection , 2001 .

[45]  D. Hodges,et al.  Far infrared imagery. , 1976, Applied optics.

[46]  G. Bastiaans,et al.  Detection and identification of explosive RDX by THz diffuse reflection spectroscopy. , 2006, Optics express.

[47]  E. Mondre Atmospheric effects on millimeter wave communication channels , 1970 .

[48]  D. T. Hodges,et al.  Safeguards applications of far infrared radiometric techniques for the detection of contraband , 1980 .

[49]  M. Tani,et al.  Noninvasive Inspection of C-4 Explosive in Mails by Terahertz Time-Domain Spectroscopy , 2004 .