Linear Regression With Shuffled Data: Statistical and Computational Limits of Permutation Recovery

Consider a noisy linear observation model with an unknown permutation, based on observing <inline-formula> <tex-math notation="LaTeX">$y = \Pi ^{*} A x^{*} + w$ </tex-math></inline-formula>, where <inline-formula> <tex-math notation="LaTeX">$x^{*} \in {\mathbb {R}} ^{d}$ </tex-math></inline-formula> is an unknown vector, <inline-formula> <tex-math notation="LaTeX">$\Pi ^{*}$ </tex-math></inline-formula> is an unknown <inline-formula> <tex-math notation="LaTeX">$n \times n$ </tex-math></inline-formula> permutation matrix, and <inline-formula> <tex-math notation="LaTeX">$w \in {\mathbb {R}} ^{n}$ </tex-math></inline-formula> is additive Gaussian noise. We analyze the problem of permutation recovery in a random design setting in which the entries of matrix <inline-formula> <tex-math notation="LaTeX">$A$ </tex-math></inline-formula> are drawn independently from a standard Gaussian distribution and establish sharp conditions on the signal-to-noise ratio, sample size <inline-formula> <tex-math notation="LaTeX">$n$ </tex-math></inline-formula>, and dimension <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula> under which <inline-formula> <tex-math notation="LaTeX">$\Pi ^{*}$ </tex-math></inline-formula> is exactly and approximately recoverable. On the computational front, we show that the maximum likelihood estimate of <inline-formula> <tex-math notation="LaTeX">$\Pi ^{*}$ </tex-math></inline-formula> is NP-hard to compute for general <inline-formula> <tex-math notation="LaTeX">$d$ </tex-math></inline-formula>, while also providing a polynomial time algorithm when <inline-formula> <tex-math notation="LaTeX">$d =1$ </tex-math></inline-formula>.

[1]  Vincent Gripon,et al.  Reconstructing a graph from path traces , 2013, 2013 IEEE International Symposium on Information Theory.

[2]  João Paulo Costeira,et al.  Subspace matching: Unique solution to point matching with geometric constraints , 2009, 2009 IEEE 12th International Conference on Computer Vision.

[3]  Xiaorui Sun,et al.  Linear regression without correspondence , 2017, NIPS.

[4]  Philip David,et al.  SoftPOSIT: Simultaneous Pose and Correspondence Determination , 2002, ECCV.

[5]  Martin Vetterli,et al.  Unlabeled sensing: Reconstruction algorithm and theoretical guarantees , 2017, 2017 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[6]  Po-Ling Loh,et al.  Corrupted and missing predictors: Minimax bounds for high-dimensional linear regression , 2012, 2012 IEEE International Symposium on Information Theory Proceedings.

[7]  W. S. Robinson A Method for Chronologically Ordering Archaeological Deposits , 1951, American Antiquity.

[8]  Thomas Blumensath,et al.  Sampling and Reconstructing Signals From a Union of Linear Subspaces , 2009, IEEE Transactions on Information Theory.

[9]  V.,et al.  On the Problem of Time Jitter in Sampling * , 1998 .

[10]  Leonidas J. Guibas,et al.  Fourier Theoretic Probabilistic Inference over Permutations , 2009, J. Mach. Learn. Res..

[11]  Martin J. Wainwright,et al.  Worst-case vs Average-case Design for Estimation from Fixed Pairwise Comparisons , 2017, ArXiv.

[12]  C. Shannon Probability of error for optimal codes in a Gaussian channel , 1959 .

[13]  Martin J. Wainwright,et al.  Denoising linear models with permuted data , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[14]  Giuseppe Caire,et al.  Signal recovery from unlabeled samples , 2017, 2017 IEEE International Symposium on Information Theory (ISIT).

[15]  Alexandre d'Aspremont,et al.  Convex Relaxations for Permutation Problems , 2013, SIAM J. Matrix Anal. Appl..

[16]  X. Huang,et al.  CAP3: A DNA sequence assembly program. , 1999, Genome research.

[17]  Vitaly Shmatikov,et al.  Robust De-anonymization of Large Sparse Datasets , 2008, 2008 IEEE Symposium on Security and Privacy (sp 2008).

[18]  Minh N. Do,et al.  A Theory for Sampling Signals from a Union of Subspaces , 2022 .

[19]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparsity Recovery in the High-Dimensional and Noisy Setting , 2007, IEEE Transactions on Information Theory.

[20]  Martin J. Wainwright,et al.  Linear regression with an unknown permutation: Statistical and computational limits , 2016, 2016 54th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[21]  Arnak S. Dalalyan,et al.  Minimax Rates in Permutation Estimation for Feature Matching , 2013, J. Mach. Learn. Res..

[22]  Martin Vetterli,et al.  Unlabeled Sensing With Random Linear Measurements , 2015, IEEE Transactions on Information Theory.

[23]  Robert D. Nowak,et al.  Network Inference From Co-Occurrences , 2006, IEEE Transactions on Information Theory.

[24]  Nair Maria Maia de Abreu,et al.  A survey for the quadratic assignment problem , 2007, Eur. J. Oper. Res..

[25]  Rémi Gribonval,et al.  Compressed sensing with unknown sensor permutation , 2014, 2014 IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP).

[26]  Andrew Vince A rearrangement inequality and the permutahedron , 1990 .

[27]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[28]  P. Rigollet,et al.  Optimal rates of statistical seriation , 2016, Bernoulli.

[29]  James Y. Zou,et al.  Linear Regression with Shuffled Labels , 2017, 1705.01342.

[30]  Martin J. Wainwright,et al.  Stochastically Transitive Models for Pairwise Comparisons: Statistical and Computational Issues , 2015, IEEE Transactions on Information Theory.

[31]  Aubrey B. Poore,et al.  Some assignment problems arising from multiple target tracking , 2006, Math. Comput. Model..

[32]  Cyrill Stachniss,et al.  Simultaneous Localization and Mapping , 2016, Springer Handbook of Robotics, 2nd Ed..

[33]  Sanjoy Dasgupta,et al.  An elementary proof of a theorem of Johnson and Lindenstrauss , 2003, Random Struct. Algorithms.

[34]  Suhas N. Diggavi,et al.  Identity Aware Sensor Networks , 2009, IEEE INFOCOM 2009.

[35]  S. Chatterjee,et al.  Matrix estimation by Universal Singular Value Thresholding , 2012, 1212.1247.

[36]  M. Luby,et al.  Asymptotically Good Codes Correcting Insertions, Deletions, and Transpositions , 1999 .

[37]  Emmanuel J. Candès,et al.  Near-Optimal Signal Recovery From Random Projections: Universal Encoding Strategies? , 2004, IEEE Transactions on Information Theory.

[38]  Christopher Rose,et al.  Timing Channels with Multiple Identical Quanta , 2012, ArXiv.

[39]  Ken-ichi Yoshihara,et al.  Simple proofs for the strong converse theorems in some channels , 1964 .