Abstract: We established the cartography of 11 exo‐ and endopeptidases in the frontal and parietal cortices and in the cerebellum of brains of patients diagnosed with a senile dementia of the Alzheimer's type (SDAT). Comparison with those of four subjects who had died without known neurologic or psychiatric illness indicated that there existed a region‐specific alteration of the peptidase contents in the disease. In the frontal area of SDAT brains, postproline dipeptidyl aminopeptidase and aminopeptidase M activities were significantly reduced. In the parietal cortex of SDAT brain, activities of three additional endopeptidases—angiotensin‐converting enzyme, proline endopeptidase, and endopeptidase 24.15—were also drastically reduced. In contrast, the cerebellum displayed a set of proteolytic activities that remained unaffected in SDAT brain. The putative influence of the disease on the catabolic fates of neurotensin, neuropeptide Y, and somatostatin(1–14) was investigated. Neurotensin was catabolized at identical rates in the frontal and parietal cortices in nondemented and SDAT brains. In contrast, neuropeptide Y metabolism was slowed down in SDAT brains in the frontal but not in the parietal cortex. Finally, the degradation velocities of somatostatin(1–14) were lowered in both cortical areas of SDAT brains. It is interesting that, by means of specific peptidase inhibitors, we demonstrated that endopeptidase 24.15 participated in somatostatin(1–14) inactivation in the parietal but not in the frontal cortex. It is suggested that the lowering of the rate of somatostatin(1–14) inactivation in the parietal cortex of SDAT brains likely results from the depletion of endopeptidase 24.15 in this brain region.