Conserving algorithms for the dynamics of Hamiltonian systems on lie groups

SummaryThree conservation laws are associated with the dynamics of Hamiltonian systems with symmetry: The total energy, the momentum map associated with the symmetry group, and the symplectic structure are invariant under the flow. Discrete time approximations of Hamiltonian flows typically do not share these properties unless specifically designed to do so. We develop explicit conservation conditions for a general class of algorithms on Lie groups. For the rigid body these conditions lead to a single-step algorithm that exactly preserves the energy, spatial momentum, and symplectic form. For homogeneous nonlinear elasticity, we find algorithms that conserve angular momentum and either the energy or the symplectic form.

[1]  R. D. Vogelaere,et al.  Methods of Integration which Preserve the Contact Transformation Property of the Hamilton Equations , 1956 .

[2]  R. D. Richtmyer,et al.  Difference methods for initial-value problems , 1959 .

[3]  Ralph Abraham,et al.  Foundations Of Mechanics , 2019 .

[4]  S. Smale,et al.  Topology and mechanics. I , 1970 .

[5]  S. Smale,et al.  Topology and mechanics. II , 1970 .

[6]  V. Arnold Mathematical Methods of Classical Mechanics , 1974 .

[7]  Donald Greenspan,et al.  Energy and momentum conserving methods of arbitrary order for the numerical integration of equations of motion , 1975 .

[8]  C. DeWitt-Morette,et al.  Analysis, manifolds, and physics , 1977 .

[9]  James P. Crutchfield,et al.  Geometry from a Time Series , 1980 .

[10]  J. W. Humberston Classical mechanics , 1980, Nature.

[11]  D. Greenspan Conservative numerical methods for ẍ = f(x) , 1984 .

[12]  Andrzej Marciniak,et al.  Energy conserving, arbitrary order numerical solutions of theN-body problem , 1984 .

[13]  Robert G. Muncaster,et al.  The dynamics of pseudo-rigid bodies: general structure and exact solutions , 1984 .

[14]  K. Feng Difference schemes for Hamiltonian formalism and symplectic geometry , 1986 .

[15]  Kang Feng,et al.  The symplectic methods for the computation of hamiltonian equations , 1987 .

[16]  J. M. Sanz-Serna,et al.  Runge-kutta schemes for Hamiltonian systems , 1988 .

[17]  Robert G. Muncaster,et al.  The theory of pseudo-rigid bodies , 1988 .

[18]  F. Lasagni Canonical Runge-Kutta methods , 1988 .

[19]  J. Marsden,et al.  Lie-Poisson Hamilton-Jacobi theory and Lie-Poisson integrators , 1988 .

[20]  Roman E. Maeder,et al.  Programming in Mathematica , 1989 .

[21]  C. Scovel,et al.  Symplectic integration of Hamiltonian systems , 1990 .

[22]  Nonlinear stability of rotating pseudo-rigid bodies , 1990, Proceedings of the Royal Society of London. A. Mathematical and Physical Sciences.

[23]  P. Saffman,et al.  Long-time symplectic integration: the example of four-vortex motion , 1991, Proceedings of the Royal Society of London. Series A: Mathematical and Physical Sciences.

[24]  C. Scovel Symplectic Numerical Integration of Hamiltonian Systems , 1991 .

[25]  J. Wisdom,et al.  Symplectic maps for the N-body problem. , 1991 .

[26]  J. C. Simo,et al.  Quasi-incompressible finite elasticity in principal stretches. Continuum basis and numerical algorithms , 1991 .

[27]  J. C. Simo,et al.  Unconditionally stable algorithms for rigid body dynamics that exactly preserve energy and momentum , 1991 .

[28]  J. Moser,et al.  Discrete versions of some classical integrable systems and factorization of matrix polynomials , 1991 .

[29]  J. C. Simo,et al.  Exact energy-momentum conserving algorithms and symplectic schemes for nonlinear dynamics , 1992 .

[30]  J. C. Simo,et al.  On a stress resultant geometrically exact shell model. Part VI: Conserving algorithms for non‐linear dynamics , 1992 .

[31]  Jack Wisdom,et al.  Symplectic Maps for the n-Body Problem: Stability Analysis , 1992 .

[32]  J. C. Simo,et al.  The discrete energy-momentum method. Conserving algorithms for nonlinear elastodynamics , 1992 .