The proto-Earth as a significant source of lunar material

Geochemical evidence continues to challenge giant impact models, which predict that the Moon formed from both proto-Earth and impactor material. Analyses of lunar samples reveal isotopic homogeneity in titanium, a highly refractory element, suggesting lunar material was derived predominantly from the mantle of the proto-Earth.

[1]  H. Paulick,et al.  The Earth’s tungsten budget during mantle melting and crust formation , 2011 .

[2]  Chemical Fractionation in the Silicate Vapor Atmosphere of the Earth , 2010, 1012.5325.

[3]  L. Taylor,et al.  Oxygen Isotopes and the Moon-Forming Giant Impact , 2001, Science.

[4]  B. Marty,et al.  Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula , 2001, astro-ph/0109549.

[5]  Alessandro Morbidelli,et al.  A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.

[6]  Equilibration in the aftermath of the lunar-forming giant impact , 2007, 1012.5323.

[7]  R. Clayton Oxygen Isotopes in Meteorites , 2003 .

[8]  M. Bizzarro,et al.  Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.

[9]  U. Krähenbühl,et al.  Titanium isotopes and the radial heterogeneity of the solar system , 2008 .

[10]  A. Davis,et al.  A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .

[11]  K. Rosman,et al.  Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum , 2001 .

[12]  R. Wieler,et al.  Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals , 2007, Nature.

[13]  S. Niemeyer,et al.  Titanium isotopic anomalies in meteorites , 1984 .

[14]  G. Lugmair,et al.  Sm-Nd age and history of Apollo 17 basalt 75075: evidence for early differentiation of the lunar exterior. , 1975 .

[15]  M. Ebihara,et al.  High fluences of neutrons determined from Sm and Gd isotopic compositions in aubrites , 1999 .

[16]  R. Canup,et al.  Simulations of a late lunar-forming impact , 2004 .

[17]  J. Birck,et al.  Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .

[18]  A. Cameron From interstellar gas to the Earth‐Moon system , 2001 .

[19]  M. Ebihara,et al.  Neutron capture effects on samarium, europium, and gadolinium in Apollo 15 deep drill‐core samples , 2000 .

[20]  H. Wiesmann,et al.  146Sm-142Nd formation interval for the lunar mantle , 1995 .

[21]  John E. Chambers,et al.  Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .

[22]  H. Hidaka,et al.  Regolith history of the aubritic meteorite parent body revealed by neutron capture effects on Sm and Gd isotopes , 2006 .

[23]  G. Wasserburg,et al.  Absolute isotopic abundances of Ti in meteorites , 1985 .

[24]  A. Pourmand,et al.  Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.

[25]  G. Wasserburg,et al.  Transport and erosional processes in the Taurus-Littrow Valley -- Inferences from neutron fluences in surface soils , 1977 .