The proto-Earth as a significant source of lunar material
暂无分享,去创建一个
Andrew M. Davis | Ingo Leya | J. Zhang | A. Davis | I. Leya | N. Dauphas | Nicolas Dauphas | A. V. Fedkin | A. Fedkin | J. Zhang | Junjun Zhang
[1] H. Paulick,et al. The Earth’s tungsten budget during mantle melting and crust formation , 2011 .
[2] Chemical Fractionation in the Silicate Vapor Atmosphere of the Earth , 2010, 1012.5325.
[3] L. Taylor,et al. Oxygen Isotopes and the Moon-Forming Giant Impact , 2001, Science.
[4] B. Marty,et al. Molybdenum Evidence for Inherited Planetary Scale Isotope Heterogeneity of the Protosolar Nebula , 2001, astro-ph/0109549.
[5] Alessandro Morbidelli,et al. A low mass for Mars from Jupiter’s early gas-driven migration , 2011, Nature.
[6] Equilibration in the aftermath of the lunar-forming giant impact , 2007, 1012.5323.
[7] R. Clayton. Oxygen Isotopes in Meteorites , 2003 .
[8] M. Bizzarro,et al. Origin of Nucleosynthetic Isotope Heterogeneity in the Solar Protoplanetary Disk , 2009, Science.
[9] U. Krähenbühl,et al. Titanium isotopes and the radial heterogeneity of the solar system , 2008 .
[10] A. Davis,et al. A new method for MC-ICPMS measurement of titanium isotopic composition: Identification of correlated isotope anomalies in meteorites , 2011 .
[11] K. Rosman,et al. Measurements of neutron capture effects on Cd, Sm and Gd in lunar samples with implications for the neutron energy spectrum , 2001 .
[12] R. Wieler,et al. Late formation and prolonged differentiation of the Moon inferred from W isotopes in lunar metals , 2007, Nature.
[13] S. Niemeyer,et al. Titanium isotopic anomalies in meteorites , 1984 .
[14] G. Lugmair,et al. Sm-Nd age and history of Apollo 17 basalt 75075: evidence for early differentiation of the lunar exterior. , 1975 .
[15] M. Ebihara,et al. High fluences of neutrons determined from Sm and Gd isotopic compositions in aubrites , 1999 .
[16] R. Canup,et al. Simulations of a late lunar-forming impact , 2004 .
[17] J. Birck,et al. Widespread 54Cr Heterogeneity in the Inner Solar System , 2007 .
[18] A. Cameron. From interstellar gas to the Earth‐Moon system , 2001 .
[19] M. Ebihara,et al. Neutron capture effects on samarium, europium, and gadolinium in Apollo 15 deep drill‐core samples , 2000 .
[20] H. Wiesmann,et al. 146Sm-142Nd formation interval for the lunar mantle , 1995 .
[21] John E. Chambers,et al. Making the Terrestrial Planets: N-Body Integrations of Planetary Embryos in Three Dimensions , 1998 .
[22] H. Hidaka,et al. Regolith history of the aubritic meteorite parent body revealed by neutron capture effects on Sm and Gd isotopes , 2006 .
[23] G. Wasserburg,et al. Absolute isotopic abundances of Ti in meteorites , 1985 .
[24] A. Pourmand,et al. Hf–W–Th evidence for rapid growth of Mars and its status as a planetary embryo , 2011, Nature.
[25] G. Wasserburg,et al. Transport and erosional processes in the Taurus-Littrow Valley -- Inferences from neutron fluences in surface soils , 1977 .