The Dark Silicon Age kicked off with the transition to multicore and will be characterized by a wild chase for seemingly ever-more insane architectural designs. At the heart of this transformation is the Utilization Wall, which states that, with each new process generation, the percentage of transistors that a chip can switch at full frequency is dropping exponentially due to power constraints. This has led to increasingly larger and larger fractions of a chip's silicon area that must remain passive, or dark. Since Dark Silicon is an exponentially-worsening phenomenon, getting worse at the same rate that Moore's Law is ostensibly making process technology better, we need to seek out fundamentally new approaches to designing processors for the Dark Silicon Age. Simply tweaking existing designs is not enough. Our research attacks the Dark Silicon problem directly through a set of energy-saving accelerators, called Conservation Cores, or c-cores. C-cores are a post-multicore approach that constructively uses dark silicon to reduce the energy consumption of an application by 10× or more. To examine the utility of c-cores, we are developing GreenDroid, a multicore chip that targets the Android mobile software stack. Our mobile application processor prototype targets a 32-nm process and is comprised of hundreds of automatically generated, specialized, patchable c-cores. These cores target specific Android hotspots, including the kernel. Our preliminary results suggest that we can attain up to 11× improvement in energy efficiency using a modest amount of silicon.
[1]
Vikram Bhatt,et al.
The GreenDroid Mobile Application Processor: An Architecture for Silicon's Dark Future
,
2011,
IEEE Micro.
[2]
Steven Swanson,et al.
QSCORES: Trading dark silicon for scalable energy efficiency with quasi-specific cores
,
2011,
2011 44th Annual IEEE/ACM International Symposium on Microarchitecture (MICRO).
[3]
Steven Swanson,et al.
Efficient complex operators for irregular codes
,
2011,
2011 IEEE 17th International Symposium on High Performance Computer Architecture.
[4]
Philippe Coussy,et al.
High-Level Synthesis
,
2008
.
[5]
Philippe Coussy,et al.
High-Level Synthesis: from Algorithm to Digital Circuit
,
2008
.
[6]
R.H. Dennard,et al.
Design Of Ion-implanted MOSFET's with Very Small Physical Dimensions
,
1974,
Proceedings of the IEEE.
[7]
Steven Swanson,et al.
Conservation cores: reducing the energy of mature computations
,
2010,
ASPLOS XV.