Invited Review Efficiency of Electron Transfer Initiated Chemiluminescence

Although the mechanisms of many chemiluminescence (CL) reactions have been intensively studied, no general model has been suggested to rationalize the efficiency of these transformations. To contribute to this task, we report here quantum yields for some well-characterized CL reactions, concentrating on recent reports of efficient transformations. Initially, a short review on the most important general CL mechanisms is given, including unimolecular peroxide decomposition, electrogenerated CL, as well as the intermolecular and intramolecular catalyzed decomposition of peroxides. Thereafter, quantum yield values for several CL transformations are compiled, including the unimolecular decomposition of 1,2-dioxetanes and 1,2-dioxetanones, the catalyzed decomposition of appropriate peroxides and the induced decomposition of properly substituted 1,2-dioxetane derivatives. Finally, some representative examples of quantum yields for complex CL transformations, like luminol oxidation and the peroxyoxalate reaction, in different experimental conditions are given. This quantum yield compilation indicates that CL transformations involving electron transfer steps can occur with high efficiency in general only if the electron transfer is of intramolecular nature, with the intermolecular processes being commonly inefficient. A notable exception to this general rule is the peroxyoxalate reaction which, also constituting an example of an intermolecular electron transfer system, possesses very high quantum yields.

[1]  W. Baader,et al.  Solvent cage effects: basis of a general mechanism for efficient chemiluminescence. , 2013, The Journal of organic chemistry.

[2]  D. Christodouleas,et al.  Development of a generic assay for the determination of total trihydroxybenzoate derivatives based on gold-luminol chemiluminescence. , 2013, Analytica chimica acta.

[3]  Yuming Huang,et al.  CoFe2O4 nanoparticles as oxidase mimic-mediated chemiluminescence of aqueous luminol for sulfite in white wines. , 2013, Journal of agricultural and food chemistry.

[4]  T. Maruyama,et al.  The Hammett correlation between distyrylbenzene substituents and chemiluminescence efficiency providing various ρ-values for peroxyoxalate chemiluminescence of several oxalates , 2013 .

[5]  W. Baader,et al.  Synthesis of unstable cyclic peroxides for chemiluminescence studies , 2012 .

[6]  W. Baader,et al.  Revision of singlet quantum yields in the catalyzed decomposition of cyclic peroxides. , 2012, The Journal of organic chemistry.

[7]  Xingwang Zheng,et al.  Selective light-triggered chemiluminescence between fluorescent dyes and luminol, and its analytical application , 2012, Analytical and Bioanalytical Chemistry.

[8]  S. N. Azizi,et al.  Chemiluminescence Characteristics of Furan Derivatives as Blue Fluorescers in Peroxyoxalate-Hydrogen Peroxide System , 2012, Journal of Fluorescence.

[9]  W. Baader,et al.  The chemiluminescent peroxyoxalate system: state of the art almost 50 years from its discover y , 2012 .

[10]  J. Tanaka,et al.  Crucial dependence of chemiluminescence efficiency on the syn/anti conformation for intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing an oxidoaryl group. , 2011, The Journal of organic chemistry.

[11]  W. Baader,et al.  Chemiluminescence-based uphill energy conversion , 2011 .

[12]  S. Albrecht,et al.  Das kalte Licht der Olefine , 2011 .

[13]  A. Santos,et al.  Luz: um raro produto de reação , 2011 .

[14]  W. Baader,et al.  Experimental evidence of the occurrence of intramolecular electron transfer in catalyzed 1,2-dioxetane decomposition. , 2010, The Journal of organic chemistry.

[15]  Thérèse Bremer Le mécanisme de la Chimiluminescence en solution ‐ II (1) Oxydation du 3‐Aminophtalhydrazide , 2010 .

[16]  W. Baader,et al.  Four‐Membered Ring Peroxide Heterocycles: Photochemistry Through the Backdoor , 2010 .

[17]  W. Adam,et al.  Dioxetanes and α-Peroxy Lactones, Four-Membered Ring Cyclic Peroxides , 2010 .

[18]  N. Watanabe,et al.  Synthesis of thermally stable acylamino-substituted bicyclic dioxetanes and their base-induced chemiluminescent decomposition. , 2010, The Journal of organic chemistry.

[19]  N. Watanabe,et al.  Synthesis of sulfanyl-, sulfinyl-, and sulfonyl-substituted bicyclic dioxetanes and their base-induced chemiluminescence. , 2010, The Journal of organic chemistry.

[20]  W. Baader,et al.  Direct kinetic observation of the chemiexcitation step in peroxyoxalate chemiluminescence. , 2009, The Journal of organic chemistry.

[21]  Bing Xu,et al.  Bioinspired supramolecular confinement of luminol and heme proteins to enhance the chemiluminescent quantum yield. , 2009, Chemistry.

[22]  Christopher M. Hindson,et al.  In search of a chemiluminescence 1,4-dioxy biradical. , 2009, Journal of the American Chemical Society.

[23]  N. Watanabe,et al.  Rotamer-dependent chemiluminescence in the intramolecular charge-transfer-induced decomposition of bicyclic dioxetanes bearing a hydroxyaryl group , 2008 .

[24]  W. Miao Electrogenerated chemiluminescence and its biorelated applications. , 2008, Chemical reviews.

[25]  Christopher M. Hindson,et al.  Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: part 2. Further identification of intermediates using 2D EXSY 13C nuclear magnetic resonance spectroscopy. , 2008, Analytica chimica acta.

[26]  H. Akiyama,et al.  Development of a Quantitative Bio/Chemiluminescence Spectrometer Determining Quantum Yields: Re‐examination of the Aqueous Luminol Chemiluminescence Standard , 2007, Photochemistry and photobiology.

[27]  W. Baader,et al.  Theoretical studies on thermal stability of alkyl-substituted 1,2-dioxetanes , 2007 .

[28]  Cassius Vinicius Stevani,et al.  Chemiluminescence of Organic Peroxides , 2007 .

[29]  W. Adam,et al.  Contemporary Trends in Dioxetane Chemistry , 2007 .

[30]  N. Watanabe,et al.  Synthesis and fluoride-induced chemiluminescent decomposition of bicyclic dioxetanes substituted with a 2-hydroxynaphthyl group , 2006 .

[31]  Ayumi Ono,et al.  New Triggering System for Dioxetane-based Chemiluminescence: Base-induced Decomposition of Bicyclic Dioxetanes Bearing a 3-Aminophenyl or 2-Phenylindol-6-yl Moiety , 2005 .

[32]  Kumiko Nagamatsu,et al.  Bicyclic dioxetanes bearing an inden-2-yl or a benzo(b)thiazol-2-yl moiety as a CIEEL-active chemiluminescent substrate emitting red light. , 2005, Luminescence : the journal of biological and chemical luminescence.

[33]  N. Watanabe,et al.  Color modulation for chemiluminescence of a dioxetane bearing a 3-(anthracen-9-yl)-5-hydroxyphenyl moiety induced by a complex of crown ether with potassium tert-butoxide , 2004 .

[34]  M. Matsumoto Advanced chemistry of dioxetane-based chemiluminescent substrates originating from bioluminescence , 2004 .

[35]  N. Watanabe,et al.  Chemiluminescent decomposition of a dioxetane bearing a 3-(1-cyanoethenyl)phenyl moiety induced by Michael addition of an anion of malonate , 2004 .

[36]  N. W. Barnett,et al.  Studies on the mechanism of the peroxyoxalate chemiluminescence reaction: Part 1. Confirmation of 1,2-dioxetanedione as an intermediate using 13C nuclear magnetic resonance spectroscopy , 2004 .

[37]  E. F. Ullman,et al.  Reversible formation of excited states in intramolecular donor assisted chemiluminescence reactions of dioxetanes , 2003 .

[38]  N. Watanabe,et al.  Fluoride-induced chemiluminescent decomposition of dioxetanes bearing a siloxyaryl moiety to produce an alkyl aryl ketone as an emitter , 2003 .

[39]  N. Watanabe,et al.  Fluoride-induced chemiluminescent decomposition of 1,2-dioxetanes bearing a phenyl moiety substituted with a methyl having an electron-withdrawing group. , 2003, Chemical communications.

[40]  Cassius Vinicius Stevani,et al.  Studies on the chemiexcitation step in peroxyoxalate chemiluminescence using steroid-substituted activators. , 2002, Luminescence : the journal of biological and chemical luminescence.

[41]  J. Motoyoshiya,et al.  Peroxyoxalate chemiluminescence of N,N'-bistosyl-1H,4H-quinoxaline-2,3-dione and related compounds. Dependence on electronic nature of fluorophores. , 2002, The Journal of organic chemistry.

[42]  Cassius Vinicius Stevani,et al.  Kinetic studies on the peroxyoxalate chemiluminescence reaction: determination of the cyclization rate constant. , 2002, Luminescence : the journal of biological and chemical luminescence.

[43]  N. Watanabe,et al.  Synthesis of 5-tert-butyl-1-(3-tert-butyldimethylsiloxy)phenyl-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptanes and their fluoride-induced chemiluminescent decomposition: effect of a phenolic electron donor on the CIEEL decay rate in aprotic polar solvent. , 2002, Luminescence : the journal of biological and chemical luminescence.

[44]  A. Schaap,et al.  CHEMILUMINESCENCE FROM A PHENOXIDE‐SUBSTITUTED 1,2‐DIOXETANE: A MODEL FOR FIREFLY BIOLUMINESCENCE , 2002 .

[45]  N. Watanabe,et al.  Base-induced chemiluminescence of 5-tert-butyl-1-(4-hydroxybenz[d]oxazol-6-yl)-4,4-dimethyl-2,6,7-trioxabicyclo[3.2.0]heptanes: chemiluminescence–chemiexcitation profile in aqueous medium , 2001 .

[46]  T. Waite,et al.  Chemiluminescence of luminol in the presence of iron(II) and oxygen: oxidation mechanism and implications for its analytical use. , 2001, Analytical chemistry.

[47]  Cassius Vinicius Stevani,et al.  Studies on the Mechanism of the Excitation Step in Peroxyoxalate Chemiluminescence , 2000 .

[48]  W. Baader,et al.  Studies on the Intramolecular Electron Transfer Catalyzed Thermolysis of 1,2-Dioxetanes , 2000 .

[49]  I. Bronstein,et al.  Back electron transfer in electron-exchange chemiluminescence of oxyaryl-substituted spiroadamantyl dioxetane, an analog of firefly bioluminescence , 2000 .

[50]  R Lejeune,et al.  Chemiluminescence as diagnostic tool. A review. , 2000, Talanta.

[51]  D. O'Kane,et al.  Absolute calibration of luminometers with low-level light standards. , 2000, Methods in enzymology.

[52]  M. Matsumoto,et al.  Synthesis and chemiluminescent decomposition of spiro[1, 2-dioxetane-3,6'-benzo(c)chromene]s. , 1999, Luminescence : the journal of biological and chemical luminescence.

[53]  N. Watanabe,et al.  Synthesis of thermally stable 1,2-dioxetanes bearing a phenylethenyl or a phenylethynyl moiety and their base-induced decomposition , 1999 .

[54]  N. Watanabe,et al.  SYNTHESIS OF 3,3-DIISOPROPYL-4-METHOXY-4-(SILOXY-2-NAPHTHYL)-1,2-DIOXETANES AND THEIR F--INDUCED CHEMILUMINESCENT DECOMPOSITION , 1999 .

[55]  T. Matsunaga,et al.  Automated detection of anti-double-stranded DNA antibody in systemic lupus erythematosus serum by flow immunoassay. , 1999, Analytical chemistry.

[56]  W. Baader,et al.  Fluoride-triggered decomposition of m-sililoxyphenyl -substituted dioxetanes by an intramolecular electron transfer (CIEEL) mechanism , 1999 .

[57]  N. Watanabe,et al.  SYNTHESIS AND CHEMILUMINESCENCE OF 3,3-DIISOPROPYL-4-METHOXY-4-(2-NAPHTHYL)-1,2-DIOXETANES , 1997 .

[58]  F. W. Schneider,et al.  Electron Exchange Luminescence of Spiroadamantane-Substituted Dioxetanes Triggered by Alkaline Phosphatase. Kinetics and Elucidation of pH Effects , 1996 .

[59]  W. Adam,et al.  Chemically Initiated Electron Exchange Luminescence of Silyloxyaryl‐Substituted Spiroadamantyl Dioxetanes: Kinetics and Excited State Yields , 1996 .

[60]  D. Reinhardt,et al.  From the firefly bioluminescence to the dioxetane-based (AMPPD) chemiluminescence immunoassay: a retroanalysis , 1996 .

[61]  Cassius Vinicius Stevani,et al.  Kinetic studies on the peroxyoxalate chemiluminescent reaction: imidazole as a nucleophilic catalyst , 1996 .

[62]  Thérèse Wilson,et al.  COMMENTS ON THE MECHANISMS OF CHEMI‐ AND BIOLUMINESCENCE , 1995 .

[63]  T. Wilson,et al.  Dioxetane decomposition revisited: A semi‐empirical study of the potential energy surface , 1995 .

[64]  D. O’Sullivan,et al.  Stopped flow luminol chemiluminescence determination of Fe(II) and reducible iron in seawater at subnanomolar levels , 1995 .

[65]  A. Gaikwad,et al.  Selective stopped-flow determination of manganese with luminol in the absence of hydrogen peroxide , 1995 .

[66]  H. Mutoh,et al.  Thermal stability and chemiluminescence of 3-alkoxy-3-aryl-4,4-diisopropyl-1,2-dioxetanes , 1995 .

[67]  W. Adam,et al.  Base‐Induced Chemiluminescence of Acetoxy‐Substituted Benzofuran Dioxetanes by an Intramolecular Electron Transfer (CIEEL) Mechanism , 1992 .

[68]  W. Richardson,et al.  Excited state selectivity in the thermolysis of a 3,4-diaryl-3,4-dimethyl-1,2-dioxetane , 1991 .

[69]  Y. Ashihara,et al.  Rapid and sensitive chemiluminescent enzyme immunoassay for measuring tumor markers. , 1991, Clinical chemistry.

[70]  K. Nonoyama,et al.  The mechanism of catalytic chemiluminescence of luminol , 1991 .

[71]  H. Köster,et al.  Applications of dioxetane chemiluminescent probes to molecular biology , 1990 .

[72]  G. Merényi,et al.  Luminol chemiluminescence: chemistry, excitation, emitter. , 1990, Journal of bioluminescence and chemiluminescence.

[73]  R. Cundall,et al.  Determination of absolute chemiluminescence quantum yields for reactions of bis-(pentachlorophenyl) oxalate, hydrogen peroxide and fluorescent compounds. , 1989, Journal of bioluminescence and chemiluminescence.

[74]  L. Catalani,et al.  Electron transfer and chemiluminescence. Two inefficient systems: 1,4-dimethoxy-9,10-diphenylanthracene peroxide and diphenoyl peroxide , 1989 .

[75]  A. Campbell Chemiluminescence : principles and applications in biology and medicine , 1988 .

[76]  R. S. Handley,et al.  Chemical and enzymatic triggering of 1,2-dioxetanes. 2: fluoride-induced chemiluminescence from tert-butyldimethylsilyloxy-substituted dioxetanes , 1987 .

[77]  R. S. Handley,et al.  Chemical and enzymatic triggering of 1,2-dioxetanes. 1: Aryl esterase-catalyzed chemiluminescence from a naphthyl acetate-substituted dioxetane , 1987 .

[78]  R. S. Handley,et al.  Chemical and enzymatic triggering of 1,2-dioxetanes. 3: alkaline phosphatase-catalyzed chemiluminescence from an aryl phosphate-substituted dioxetane , 1987 .

[79]  W. Baader,et al.  Effects of methylation on the thermal stability and chemiluminescence properties of 1,2-dioxetanes , 1985 .

[80]  W. Baader,et al.  1,2‐Dioxetane: Synthesis, Characterization, Stability, and Chemiluminescence , 1984 .

[81]  G. Schuster,et al.  Thermolysis of 4-methyl-4-phenylmalonyl peroxide: a new oxygen dependent chemiluminescent reaction , 1983 .

[82]  G. Cilento,et al.  Four‐Membered Ring Peroxides as Excited State Equivalents: A New Dimension in Bioorganic Chemistry , 1983 .

[83]  C. Foote,et al.  Chemistry of singlet oxygen. 41 direct observation of a dioxetane from the singlet oxygen photooxygenation of a thioketene acetal , 1983 .

[84]  W. Adam,et al.  Spiroadamantyl stabilization of sulfur-substituted 1,2-dioxetanes , 1982 .

[85]  W. Baader,et al.  Das Experiment: Singulettsauerstoff - Chemische Erzeugung und Chemolumineszenz , 1982 .

[86]  A. Schaap,et al.  Chemiluminescence from a phenoxide-substituted 1,2-dioxetane: a model for firefly bioluminescence , 1982 .

[87]  W. Adam 4 – Determination of Chemiexcitation Yields in the Thermal Generation of Electronic Excitation from 1,2-Dioxetanes , 1982 .

[88]  Nobutaka Suzuki,et al.  Photochemical (2 + 2) cycloaddition of and thermal decomposition to n-methylacridone and acetone: chemiluminescence as a probe of possible formation of 1,2-dioxetanes , 1982 .

[89]  G. Schuster,et al.  Chemiluminescence of Organic Compounds , 1982 .

[90]  J. Lind,et al.  Determination of the chemiluminescence quantum yield of luminol in rapid chemical reactions , 1981 .

[91]  B. Dixon,et al.  Chemiluminescence of secondary peroxy esters , 1981 .

[92]  N. Turro,et al.  Chemiluminescent thermolysis of .alpha.-peroxylactones , 1980 .

[93]  Christopher Lee,et al.  Structural effects on the intramolecular electron transfer induced decomposition of a series of 1,2-dioxetanes derived from 9-alkylidene-10-methylacridans , 1980 .

[94]  W. Adam,et al.  CYCLIC PEROXIDES. 81. FLUORESCER-ENHANCED CHEMILUMINESCENCE OF α-PEROXYLACTONES VIA ELECTRON EXCHANGE , 1980 .

[95]  W. Adam Thermal generation of electronic excitation with hyperenergetic molecules , 1980 .

[96]  G. Schuster,et al.  Chemiluminescence of dimethyldioxetanone. Unimolecular generation of excited singlet and triplet acetone. Chemically initiated electron-exchange luminescence, the primary light generating reaction , 1980 .

[97]  E. H. White,et al.  3,3,7,7-BIS-(10′-METHYL-9′,9′-ACRIDANYL)-1,2,5,6-TETRAOXOCANE, A DIOXETANE DIMER, FROM THE REACTION OF 10-METHYL-9-METHYLENE-9,10-ACRIDANE WITH SINGLET OXYGEN , 1979 .

[98]  T. C. Bruice,et al.  Chemiluminescent reactions of lucigenin. 2. Reactions of lucigenin with hydroxide ion and other nucleophiles , 1979 .

[99]  W. Richardson,et al.  Excited-state energy distribution between dissimilar carbonyl molecules produced from 1,2-dioxetanes , 1979 .

[100]  S. Matsugo,et al.  Photoinduced reactions. 108. 1,2-dioxetane formation in an indole system , 1979 .

[101]  G. Schuster Chemiluminescence of organic peroxides. Conversion of ground-state reactants to excited-state products by the chemically initiated electron-exchange luminescence mechanism , 1979 .

[102]  Hideshi Nakamura,et al.  2-(1-Methylindol-3-yl)-3-phenyldihydro-1,4-dioxin 2,3-epidioxide, a dioxetan resulting in efficient ultraviolet chemiluminescence , 1979 .

[103]  G. Schuster,et al.  Chemiluminescence of diphenoyl peroxide. Chemically initiated electron exchange luminescence. A new general mechanism for chemical production of electronically excited states , 1978 .

[104]  Y. Haas,et al.  Chemiluminescence of luminol and related compounds under e-beam excitation. Absolute chemical and light yields , 1978 .

[105]  G. Schuster,et al.  Dioxetanone chemiluminescence by the chemically initiated electron exchange pathway. Efficient generation of excited singlet states , 1978 .

[106]  G. Schuster,et al.  Bioluminescence of the firefly: key steps in the formation of the electronically excited state for model systems. , 1978, Proceedings of the National Academy of Sciences of the United States of America.

[107]  I. Beheshti,et al.  Singlet excited states from dioxetan decomposition , 1977 .

[108]  W. Adam,et al.  The Chemistry of 1,2-Dioxetanes , 1977 .

[109]  K. D. Legg,et al.  Chemiluminescence from the reaction of singlet oxygen with 10,10'-dimethyl-9,9'-biacridylidene. A reactive 1,2-dioxetane , 1976 .

[110]  W. Seitz,et al.  Mechanism of cobalt catalysis of luminol chemiluminescence , 1975 .

[111]  W. Andō,et al.  Singlet oxygen reaction. IV. Photooxygenation of enamines involving a two-step cleavage of a 1,2-dioxetane intermediate , 1975 .

[112]  N. Turro,et al.  Chemiexcitation mechanims. Role of symmetry and spin-orbit coupling in diradicals , 1975 .

[113]  C. Foote,et al.  Chemistry of singlet oxygen. XX. Mechanism of the sensitized photooxidation of enamines , 1975 .

[114]  H. Wasserman,et al.  Enamine-singlet oxygen reactions. α-Diketones from intermediate amino dioxetanes , 1975 .

[115]  W. Andō,et al.  Singlet oxygen reaction V. Ring size effects on the decomposition of sulfur substituted 1,2-dioxetane , 1975 .

[116]  E. H. White,et al.  Synthesis and chemiluminescence of derivatives of luminol and isoluminol , 1974 .

[117]  N. Turro,et al.  Thermal and photochemical generation of electronically excited organic molecules. Tetramethyl-1,2-dioxetane and naphthvalene , 1973 .

[118]  W. Richardson,et al.  Thermochemistry and estimated activation parameters for the thermal decomposition of 1,2-dioxetanedione, 4-tert-butyl-1,2-dioxetan-3-one, and 4,4-dimethyl-1,2-dioxetan-3-one , 1972 .

[119]  W. Seitz,et al.  Determination of trace amounts of iron(II) using chemiluminescence analysis , 1972 .

[120]  E. H. White,et al.  Yields of chemically produced excited states , 1972 .

[121]  W. Adam,et al.  Cyclic peroxides. XVI. .alpha.-peroxy lactone. Synthesis and chemiluminescence , 1972 .

[122]  H. Seliger,et al.  QUANTUM YIELDS OF THE LUMINOL CHEMILUMINESCENCE REACTION IN AQUEOUS AND APROTIC SOLVENTS * , 1972 .

[123]  W. Richardson,et al.  Thermochemistry of 1,2-dioxetane and its methylated derivatives. Estimate of activation parameters , 1970 .

[124]  E. H. White,et al.  Chemiluminescence of organic hydrazides , 1970 .

[125]  M. M. Rauhut Chemiluminescence from concerted peroxide decomposition reactions , 1969 .

[126]  K. Kopecky,et al.  Luminescence in the thermal decomposition of 3,3,4-trimethyl-1,2-dioxetane , 1969 .

[127]  F. McCapra An application of the theory of electrocyclic reactions to bioluminescence , 1968 .

[128]  John W. Lee,et al.  ABSOLUTE SPECTRAL SENSITIVITY OF PHOTOTUBES AND THE APPLICATION TO THE MEASUREMENT OF THE ABSOLUTE QUANTUM YIELDS OF CHEMILUMINESCENCE AND BIOLUMINESCENCE * , 1965, Photochemistry and photobiology.

[129]  A. Bard,et al.  Chemiluminescence of Electrogenerated 9,10-Diphenylanthracene Anion Radical , 1965 .

[130]  E. Chandross,et al.  Electroluminescence in Solutions of Aromatic Hydrocarbons , 1964 .

[131]  David M. Hercules,et al.  Chemiluminescence Resulting from Electrochemically Generated Species , 1964, Science.

[132]  E. H. White,et al.  Chemilunimescence of Luminol: The Chemcial Reaction , 1964 .

[133]  J. W. Hastings,et al.  Total Quantum Flux of Isotropic Sources , 1963 .

[134]  E. Chandross A new chemiluminescent system , 1963 .

[135]  A. Gee Electrochemiluminescence at a Silicon Anode in Contact with an Electrolyte , 1960 .

[136]  K. Gleu,et al.  Die Chemiluminescenz der Dimethyl‐diacridyliumsalze , 1935 .

[137]  H. Albrecht Über die Chemiluminescenz des Aminophthalsäurehydrazids , 1928 .

[138]  B. Radziszewski Untersuchungen über Hydrobenzamid, Amarin und Lophin , 1877 .