Flexible Asymmetric Micro‐Supercapacitors Based on Bi2O3 and MnO2 Nanoflowers: Larger Areal Mass Promises Higher Energy Density

A flexible asymmetric supercapacitor (ASC) with high energy density is designed and fabricated using flower‐like Bi2O3 and MnO2 grown on carbon nanofiber (CNF) paper as the negative and positive electrodes, respectively. The lightweight (1.6 mg cm−2), porous, conductive, and flexible features make the CNF paper an ideal support for guest active materials, which permit a large areal mass of 9 mg cm−2 for Bi2O3 (≈85 wt% of the entire electrode). Thus, the optimal device with an operation voltage of 1.8 V can deliver a high energy density of 43.4 μWh cm−2 (11.3 W h kg−1, based on the total electrodes) and a maximum power density of 12.9 mW cm−2 (3370 W kg−1). This work provides an example of large areal mass and flexible electrode for ASCs with high areal capacitance and high energy density, holding great promise for future flexible electronic devices.

[1]  Hongsen Li,et al.  NiCo2S4 Nanosheets Grown on Nitrogen‐Doped Carbon Foams as an Advanced Electrode for Supercapacitors , 2015 .

[2]  Meng Li,et al.  Flexible Solid‐State Supercapacitor Based on Graphene‐based Hybrid Films , 2014 .

[3]  S. Yen,et al.  Novel iron oxyhydroxide lepidocrocite nanosheet as ultrahigh power density anode material for asymmetric supercapacitors. , 2014, Small.

[4]  Afriyanti Sumboja,et al.  Flexible and Highly Scalable V2O5‐rGO Electrodes in an Organic Electrolyte for Supercapacitor Devices , 2014 .

[5]  Chao Gao,et al.  Bismuth oxide nanotubes-graphene fiber-based flexible supercapacitors. , 2014, Nanoscale.

[6]  Yunqi Liu,et al.  Facile Synthesis of 3D MnO2–Graphene and Carbon Nanotube–Graphene Composite Networks for High‐Performance, Flexible, All‐Solid‐State Asymmetric Supercapacitors , 2014 .

[7]  Jun Yan,et al.  Nitrogen‐Doped Carbon Networks for High Energy Density Supercapacitors Derived from Polyaniline Coated Bacterial Cellulose , 2014 .

[8]  B. Liu,et al.  Flexible Energy‐Storage Devices: Design Consideration and Recent Progress , 2014, Advanced materials.

[9]  Jianhui Zhu,et al.  3D carbon/cobalt-nickel mixed-oxide hybrid nanostructured arrays for asymmetric supercapacitors. , 2014, Small.

[10]  G. Gary Wang,et al.  Flexible solid-state supercapacitors: design, fabrication and applications , 2014 .

[11]  Hui Peng,et al.  Low-cost and high energy density asymmetric supercapacitors based on polyaniline nanotubes and MoO3 nanobelts , 2014 .

[12]  Dezhi Kong,et al.  Three‐Dimensional Co3O4@MnO2 Hierarchical Nanoneedle Arrays: Morphology Control and Electrochemical Energy Storage , 2014 .

[13]  Min Wei,et al.  Hierarchical NiMn Layered Double Hydroxide/Carbon Nanotubes Architecture with Superb Energy Density for Flexible Supercapacitors , 2014 .

[14]  Seok‐In Na,et al.  Preparation of porous carbon nanofibers derived from graphene oxide/polyacrylonitrile composites as electrochemical electrode materials , 2014 .

[15]  Min Chen,et al.  Nickel–Cobalt Layered Double Hydroxide Nanosheets for High‐performance Supercapacitor Electrode Materials , 2014 .

[16]  Wei Chen,et al.  Ultrathin MnO2 nanosheets supported on cellulose based carbon papers for high-power supercapacitors , 2014 .

[17]  Yong Ding,et al.  Low-cost high-performance solid-state asymmetric supercapacitors based on MnO2 nanowires and Fe2O3 nanotubes. , 2014, Nano letters.

[18]  S. T. Senthilkumar,et al.  Fabrication of Bi2O3||AC asymmetric supercapacitor with redox additive aqueous electrolyte and its improved electrochemical performances , 2014 .

[19]  S. Xie,et al.  Asymmetric Supercapacitors Based on Graphene/MnO2 Nanospheres and Graphene/MoO3 Nanosheets with High Energy Density , 2013 .

[20]  Y. Bando,et al.  Cable‐Type Supercapacitors of Three‐Dimensional Cotton Thread Based Multi‐Grade Nanostructures for Wearable Energy Storage , 2013, Advanced materials.

[21]  Shuhong Yu,et al.  Bacterial‐Cellulose‐Derived Carbon Nanofiber@MnO2 and Nitrogen‐Doped Carbon Nanofiber Electrode Materials: An Asymmetric Supercapacitor with High Energy and Power Density , 2013, Advanced materials.

[22]  F. Kang,et al.  A high-performance asymmetric supercapacitor based on carbon and carbon–MnO2 nanofiber electrodes , 2013 .

[23]  Y. Tong,et al.  3D MnO2-graphene composites with large areal capacitance for high-performance asymmetric supercapacitors. , 2013, Nanoscale.

[24]  A. Hirata,et al.  Electroplated Thick Manganese Oxide Films with Ultrahigh Capacitance , 2013 .

[25]  Zenan Yu,et al.  Highly Ordered MnO2 Nanopillars for Enhanced Supercapacitor Performance , 2013, Advanced materials.

[26]  Yang Li,et al.  Nanoporous Ni(OH)2 thin film on 3D Ultrathin-graphite foam for asymmetric supercapacitor. , 2013, ACS nano.

[27]  Afriyanti Sumboja,et al.  Large Areal Mass, Flexible and Free‐Standing Reduced Graphene Oxide/Manganese Dioxide Paper for Asymmetric Supercapacitor Device , 2013, Advanced materials.

[28]  J. Xu,et al.  Flexible asymmetric supercapacitors based upon Co9S8 nanorod//Co3O4@RuO2 nanosheet arrays on carbon cloth. , 2013, ACS nano.

[29]  Teng Zhai,et al.  High energy density asymmetric quasi-solid-state supercapacitor based on porous vanadium nitride nanowire anode. , 2013, Nano letters.

[30]  Yuanyuan Li,et al.  Construction of high-capacitance 3D CoO@polypyrrole nanowire array electrode for aqueous asymmetric supercapacitor. , 2013, Nano letters.

[31]  Z. Xue,et al.  Microwave-assisted synthesis and photocatalytic properties of flower-like Bi2WO6 and Bi2O3-Bi2WO6 composite. , 2013, Journal of colloid and interface science.

[32]  Zhenxing Zhang,et al.  Freestanding three-dimensional graphene/MnO2 composite networks as ultralight and flexible supercapacitor electrodes. , 2013, ACS nano.

[33]  Xu Xiao,et al.  WO3−x/MoO3−x Core/Shell Nanowires on Carbon Fabric as an Anode for All‐Solid‐State Asymmetric Supercapacitors , 2012 .

[34]  Zhanwei Xu,et al.  Graphene-nickel cobaltite nanocomposite asymmetrical supercapacitor with commercial level mass loading , 2012, Nano Research.

[35]  Xiaodong Li,et al.  Towards Textile Energy Storage from Cotton T‐Shirts , 2012, Advanced materials.

[36]  X. Lou,et al.  Growth of ultrathin mesoporous Co3O4 nanosheet arrays on Ni foam for high-performance electrochemical capacitors , 2012 .

[37]  Ayyakkannu Manivannan,et al.  Highly conductive electrospun carbon nanofiber/MnO2 coaxial nano-cables for high energy and power density supercapacitors , 2012 .

[38]  Feiyu Kang,et al.  Carbon Nanofibers Prepared via Electrospinning , 2012, Advanced materials.

[39]  Teng Zhai,et al.  WO3–x@Au@MnO2 Core–Shell Nanowires on Carbon Fabric for High‐Performance Flexible Supercapacitors , 2012, Advanced materials.

[40]  Jun Zhou,et al.  Flexible solid-state supercapacitors based on carbon nanoparticles/MnO2 nanorods hybrid structure. , 2012, ACS nano.

[41]  F. Kang,et al.  Coaxial carbon nanofibers/MnO2 nanocomposites as freestanding electrodes for high-performance electrochemical capacitors , 2011 .

[42]  Feng Li,et al.  Graphene–Cellulose Paper Flexible Supercapacitors , 2011 .

[43]  Zhi Zheng,et al.  Low temperature synthesis of δ-Bi2O3 solid spheres and their conversion to hierarchical BiOI nests via the Kirkendall effect , 2011 .

[44]  Yunlong Zhao,et al.  Hierarchical MnMoO(4)/CoMoO(4) heterostructured nanowires with enhanced supercapacitor performance. , 2011, Nature communications.

[45]  Yi Cui,et al.  Solution-processed graphene/MnO2 nanostructured textiles for high-performance electrochemical capacitors. , 2011, Nano letters.

[46]  X. Xing,et al.  Self-assembled 3D flowerlike hierarchical Fe3O4@Bi2O3 core-shell architectures and their enhanced photocatalytic activity under visible light. , 2011, Chemistry.

[47]  Yexiang Tong,et al.  ZnO@MoO3 core/shell nanocables: facile electrochemical synthesis and enhanced supercapacitor performances , 2011 .

[48]  E. Higuchi,et al.  Preparation and characterization of Ni-based positive electrodes for use in aqueous electrochemical capacitors , 2010 .

[49]  Yi Shi,et al.  Preparation and characterization of flexible asymmetric supercapacitors based on transition-metal-oxide nanowire/single-walled carbon nanotube hybrid thin-film electrodes. , 2010, ACS nano.

[50]  Y. Tong,et al.  Synthesis of hierarchical rippled Bi(2)O(3) nanobelts for supercapacitor applications. , 2010, Chemical communications.

[51]  F. Béguin,et al.  High power supercapacitors using polyacrylonitrile-based carbon nanofiber paper , 2009 .

[52]  Yi Wang,et al.  Bi2O3 deposited on highly ordered mesoporous carbon for supercapacitors , 2009 .

[53]  Sung-Hwan Han,et al.  Electrosynthesis of Bi2O3 thin films and their use in electrochemical supercapacitors , 2006 .

[54]  Liang Li,et al.  Conversion of a Bi nanowire array to an array of Bi-Bi2O3 core-shell nanowires and Bi2O3 nanotubes. , 2006, Small.

[55]  Mathieu Toupin,et al.  Charge Storage Mechanism of MnO2 Electrode Used in Aqueous Electrochemical Capacitor , 2004 .

[56]  M. Chigane,et al.  Manganese Oxide Thin Film Preparation by Potentiostatic Electrolyses and Electrochromism , 2000 .