Sparse Recovery Using Sparse Matrices

In this paper, we survey algorithms for sparse recovery problems that are based on sparse random matrices. Such matrices has several attractive properties: they support algorithms with low computational complexity, and make it easy to perform incremental updates to signals. We discuss applications to several areas, including compressive sensing, data stream computing, and group testing.

[1]  Ting Sun,et al.  Single-pixel imaging via compressive sampling , 2008, IEEE Signal Process. Mag..

[2]  L. Wood,et al.  From the Authors , 2003, European Respiratory Journal.

[3]  Richard Baraniuk,et al.  Compressed Sensing Reconstruction via Belief Propagation , 2006 .

[4]  Ely Porat,et al.  Approximate sparse recovery: optimizing time and measurements , 2009, STOC '10.

[5]  George Varghese,et al.  New directions in traffic measurement and accounting: Focusing on the elephants, ignoring the mice , 2003, TOCS.

[6]  Joel A. Tropp,et al.  Algorithmic linear dimension reduction in the l_1 norm for sparse vectors , 2006, ArXiv.

[7]  V. Chandar A Negative Result Concerning Explicit Matrices With The Restricted Isometry Property , 2008 .

[8]  Richard G. Baraniuk,et al.  A new compressive imaging camera architecture using optical-domain compression , 2006, Electronic Imaging.

[9]  E. Candes,et al.  11-magic : Recovery of sparse signals via convex programming , 2005 .

[10]  Martin J. Wainwright,et al.  Information-Theoretic Limits on Sparse Signal Recovery: Dense versus Sparse Measurement Matrices , 2008, IEEE Transactions on Information Theory.

[11]  Piotr Indyk,et al.  Combining geometry and combinatorics: A unified approach to sparse signal recovery , 2008, 2008 46th Annual Allerton Conference on Communication, Control, and Computing.

[12]  Marios Hadjieleftheriou,et al.  Finding frequent items in data streams , 2008, Proc. VLDB Endow..

[13]  A. Robert Calderbank,et al.  Efficient and Robust Compressed Sensing using High-Quality Expander Graphs , 2008, ArXiv.

[14]  Noam Shental,et al.  Rare-Allele Detection Using Compressed Se(que)nsing , 2009, ArXiv.

[15]  Marios Hadjieleftheriou,et al.  Finding the frequent items in streams of data , 2009, CACM.

[16]  Yishay Mansour,et al.  Randomized Interpolation and Approximation of Sparse Polynomials , 1992, SIAM J. Comput..

[17]  Justin K. Romberg,et al.  Beyond Nyquist: Efficient Sampling of Sparse Bandlimited Signals , 2009, IEEE Transactions on Information Theory.

[18]  Sudipto Guha,et al.  Near-optimal sparse fourier representations via sampling , 2002, STOC '02.

[19]  Richard G. Baraniuk,et al.  Fast reconstruction of piecewise smooth signals from random projections , 2005 .

[20]  Vahid Tarokh,et al.  Compressive Sensing Using Low Density Frames , 2009, ArXiv.

[21]  Richard G. Baraniuk,et al.  Bayesian Compressive Sensing Via Belief Propagation , 2008, IEEE Transactions on Signal Processing.

[22]  Piotr Indyk,et al.  Sparse Recovery Using Sparse Matrices , 2010, Proceedings of the IEEE.

[23]  Peter J. Woolf,et al.  poolMC: Smart pooling of mRNA samples in microarray experiments , 2010, BMC Bioinformatics.

[24]  Enkatesan G Uruswami Unbalanced expanders and randomness extractors from Parvaresh-Vardy codes , 2008 .

[25]  Deanna Needell,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, ArXiv.

[26]  Sudipto Guha,et al.  Fast, small-space algorithms for approximate histogram maintenance , 2002, STOC '02.

[27]  E. Candès,et al.  Stable signal recovery from incomplete and inaccurate measurements , 2005, math/0503066.

[28]  Piotr Indyk,et al.  Sequential Sparse Matching Pursuit , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[29]  David P. Woodruff,et al.  Lower bounds for sparse recovery , 2010, SODA '10.

[30]  Graham Cormode,et al.  Summarizing and Mining Skewed Data Streams , 2005, SDM.

[31]  S. Muthukrishnan Some Algorithmic Problems and Results in Compressed Sensing , 2006 .

[32]  Joel A. Tropp,et al.  Signal Recovery From Random Measurements Via Orthogonal Matching Pursuit , 2007, IEEE Transactions on Information Theory.

[33]  Venkatesan Guruswami,et al.  Almost Euclidean subspaces of ℓ1N VIA expander codes , 2007, SODA '08.

[34]  J. Tropp,et al.  SIGNAL RECOVERY FROM PARTIAL INFORMATION VIA ORTHOGONAL MATCHING PURSUIT , 2005 .

[35]  David L Donoho,et al.  Compressed sensing , 2006, IEEE Transactions on Information Theory.

[36]  J. Tropp,et al.  CoSaMP: Iterative signal recovery from incomplete and inaccurate samples , 2008, Commun. ACM.

[37]  Venkatesan Guruswami,et al.  Unbalanced expanders and randomness extractors from Parvaresh--Vardy codes , 2009, JACM.

[38]  Deanna Needell,et al.  Uniform Uncertainty Principle and Signal Recovery via Regularized Orthogonal Matching Pursuit , 2007, Found. Comput. Math..

[39]  Andrea Montanari,et al.  Counter braids: a novel counter architecture for per-flow measurement , 2008, SIGMETRICS '08.

[40]  S. Muthukrishnan,et al.  One-Pass Wavelet Decompositions of Data Streams , 2003, IEEE Trans. Knowl. Data Eng..

[41]  R. Vershynin,et al.  One sketch for all: fast algorithms for compressed sensing , 2007, STOC '07.

[42]  Graham Cormode,et al.  Combinatorial Algorithms for Compressed Sensing , 2006 .

[43]  S. Kirolos,et al.  Random Sampling for Analog-to-Information Conversion of Wideband Signals , 2006, 2006 IEEE Dallas/CAS Workshop on Design, Applications, Integration and Software.

[44]  Weiyu Xu,et al.  Efficient Compressive Sensing with Deterministic Guarantees Using Expander Graphs , 2007, 2007 IEEE Information Theory Workshop.

[45]  D. Du,et al.  Combinatorial Group Testing and Its Applications , 1993 .

[46]  Ronald A. DeVore,et al.  Deterministic constructions of compressed sensing matrices , 2007, J. Complex..

[47]  Graham Cormode,et al.  An improved data stream summary: the count-min sketch and its applications , 2004, J. Algorithms.

[48]  P. Indyk,et al.  Near-Optimal Sparse Recovery in the L1 Norm , 2008, 2008 49th Annual IEEE Symposium on Foundations of Computer Science.

[49]  Emmanuel J. Candès,et al.  Robust uncertainty principles: exact signal reconstruction from highly incomplete frequency information , 2004, IEEE Transactions on Information Theory.

[50]  Yaniv Erlich,et al.  Compressed sensing approach for high throughput carrier screen , 2009, 2009 47th Annual Allerton Conference on Communication, Control, and Computing (Allerton).

[51]  Piotr Indyk Explicit constructions for compressed sensing of sparse signals , 2008, SODA '08.

[52]  Richard G. Baraniuk,et al.  Sudocodes ߝ Fast Measurement and Reconstruction of Sparse Signals , 2006, 2006 IEEE International Symposium on Information Theory.

[53]  V. Temlyakov,et al.  A remark on Compressed Sensing , 2007 .

[54]  Balachander Krishnamurthy,et al.  Sketch-based change detection: methods, evaluation, and applications , 2003, IMC '03.

[55]  Alexandros G. Dimakis,et al.  Sparse Recovery of Positive Signals with Minimal Expansion , 2009, ArXiv.