The art and design of genetic screens: Caenorhabditis elegans

[1]  Michael Rowe,et al.  The rest is silence. , 2002, Health affairs.

[2]  M. Chalfie,et al.  MEC-2 regulates C. elegans DEG/ENaC channels needed for mechanosensation , 2002, Nature.

[3]  Min Han,et al.  fzr-1 and lin-35/Rb function redundantly to control cell proliferation in C. elegans as revealed by a nonbiased synthetic screen. , 2002, Genes & development.

[4]  Valerie A. Hale,et al.  APH-1 is a multipass membrane protein essential for the Notch signaling pathway in Caenorhabditis elegans embryos , 2002, Proceedings of the National Academy of Sciences of the United States of America.

[5]  E. Maine,et al.  RNAi As a tool for understanding germline development in Caenorhabditis elegans: uses and cautions. , 2001, Developmental biology.

[6]  S. Mango Stop making nonSense: the C. elegans smg genes. , 2001, Trends in genetics : TIG.

[7]  J. Hodgkin What does a worm want with 20,000 genes? , 2001, Genome Biology.

[8]  J. Satterlee,et al.  Specification of Thermosensory Neuron Fate in C. elegans Requires ttx-1, a Homolog of otd/Otx , 2001, Neuron.

[9]  M. Davis,et al.  Mobilization of a Drosophila transposon in the Caenorhabditis elegans germ line , 2001, Nature.

[10]  I. Greenwald,et al.  Genetic analysis of endocytosis in Caenorhabditis elegans: coelomocyte uptake defective mutants. , 2001, Genetics.

[11]  R. Ankeny The natural history of Caenorhabditis elegans research , 2001, Nature Reviews Genetics.

[12]  E. Jorgensen,et al.  Rules of nonallelic noncomplementation at the synapse in Caenorhabditis elegans. , 2001, Genetics.

[13]  I. Greenwald,et al.  Regulation of endocytosis by CUP-5, the Caenorhabditis elegans mucolipin-1 homolog , 2001, Nature Genetics.

[14]  Y. Kohara,et al.  The Caenorhabditis elegans unc-32 Gene Encodes Alternative Forms of a Vacuolar ATPase a Subunit* , 2001, The Journal of Biological Chemistry.

[15]  Sebastian A. Leidel,et al.  Functional genomic analysis of cell division in C. elegans using RNAi of genes on chromosome III , 2000, Nature.

[16]  P. Zipperlen,et al.  Functional genomic analysis of C. elegans chromosome I by systematic RNA interference , 2000, Nature.

[17]  M. A. van der Horst,et al.  Single nucleotide polymorphisms in wild isolates of Caenorhabditis elegans. , 2000, Genome research.

[18]  B. Bowerman Embryonic polarity: Protein stability in asymmetric cell division , 2000, Current Biology.

[19]  D. McCormick,et al.  Mutations in Synaptojanin Disrupt Synaptic Vesicle Recycling , 2000, The Journal of cell biology.

[20]  J. Priess,et al.  aph-2 encodes a novel extracellular protein required for GLP-1-mediated signaling. , 2000, Development.

[21]  M. Nonet,et al.  rpm-1, A Conserved Neuronal Gene that Regulates Targeting and Synaptogenesis in C. elegans , 2000, Neuron.

[22]  M. Zhen,et al.  Regulation of Presynaptic Terminal Organization by C. elegans RPM-1, a Putative Guanine Nucleotide Exchanger with a RING-H2 Finger Domain , 2000, Neuron.

[23]  Min Han,et al.  The synthetic multivulval genes of C. elegans: functional redundancy, Ras‐antagonism, and cell fate determination , 2000, Genesis.

[24]  J. Hodgkin,et al.  MRT-2 checkpoint protein is required for germline immortality and telomere replication in C. elegans , 2000, Nature.

[25]  M. Davis,et al.  A mutation in the C. elegans EXP-2 potassium channel that alters feeding behavior. , 1999, Science.

[26]  I. Chin-Sang,et al.  The Ephrin VAB-2/EFN-1 Functions in Neuronal Signaling to Regulate Epidermal Morphogenesis in C. elegans , 1999, Cell.

[27]  M. Hengartner,et al.  The Molecular Mechanism of Programmed Cell Death in C. elegans , 1999, Annals of the New York Academy of Sciences.

[28]  D. Hirsh,et al.  Receptor-mediated endocytosis in the Caenorhabditis elegans oocyte. , 1999, Molecular biology of the cell.

[29]  A. Fire,et al.  The RING finger/B-box factor TAM-1 and a retinoblastoma-like protein LIN-35 modulate context-dependent gene silencing in Caenorhabditis elegans. , 1999, Genes & development.

[30]  Cori Bargmann,et al.  Lateral Signaling Mediated by Axon Contact and Calcium Entry Regulates Asymmetric Odorant Receptor Expression in C. elegans , 1999, Cell.

[31]  Nektarios Tavernarakis,et al.  UNC-4/UNC-37-dependent repression of motor neuron-specific genes controls synaptic choice in Caenorhabditis elegans. , 1999, Genes & development.

[32]  B Reardon,et al.  High-throughput isolation of Caenorhabditis elegans deletion mutants. , 1999, Genome research.

[33]  A. Davies,et al.  Functional overlap between the mec-8 gene and five sym genes in Caenorhabditis elegans. , 1999, Genetics.

[34]  M. Labouesse,et al.  Patterning the C. elegans embryo: moving beyond the cell lineage. , 1999, Trends in genetics : TIG.

[35]  E. Jorgensen,et al.  UNC-11, a Caenorhabditis elegans AP180 homologue, regulates the size and protein composition of synaptic vesicles. , 1999, Molecular biology of the cell.

[36]  M. Nonet,et al.  Visualization of synaptic specializations in live C. elegans with synaptic vesicle protein-GFP fusions , 1999, Journal of Neuroscience Methods.

[37]  P. Gönczy,et al.  Dissection of Cell Division Processes in the One Cell Stage Caenorhabditis elegans Embryo by Mutational Analysis , 1999, The Journal of cell biology.

[38]  Andrew Smith Genome sequence of the nematode C-elegans: A platform for investigating biology , 1998 .

[39]  P. Sternberg,et al.  Genetics of RAS signaling in C. elegans. , 1998, Trends in genetics : TIG.

[40]  P. Anderson,et al.  mRNA surveillance mitigates genetic dominance in Caenorhabditis elegans , 1998, Molecular and General Genetics MGG.

[41]  Cori Bargmann,et al.  Natural Variation in a Neuropeptide Y Receptor Homolog Modifies Social Behavior and Food Response in C. elegans , 1998, Cell.

[42]  J. Hodgkin,et al.  Changing styles in C. elegans genetics. , 1998, Trends in genetics : TIG.

[43]  J. White,et al.  A genetic screen for temperature-sensitive cell-division mutants of Caenorhabditis elegans. , 1998, Genetics.

[44]  A. Rougvie,et al.  Identification of heterochronic mutants in Caenorhabditis elegans. Temporal misexpression of a collagen::green fluorescent protein fusion gene. , 1998, Genetics.

[45]  J. Kaplan,et al.  Gαs-Induced Neurodegeneration inCaenorhabditis elegans , 1998, The Journal of Neuroscience.

[46]  A. Chisholm,et al.  The VAB-1 Eph Receptor Tyrosine Kinase Functions in Neural and Epithelial Morphogenesis in C. elegans , 1998, Cell.

[47]  A. Fire,et al.  Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans , 1998, Nature.

[48]  Jennifer A Zallen,et al.  The Conserved Immunoglobulin Superfamily Member SAX-3/Robo Directs Multiple Aspects of Axon Guidance in C. elegans , 1998, Cell.

[49]  R. J. Hill,et al.  end-1 encodes an apparent GATA factor that specifies the endoderm precursor in Caenorhabditis elegans embryos. , 1997, Genes & development.

[50]  R. Plasterk,et al.  Reverse genetics by chemical mutagenesis in Caenorhabditis elegans , 1997, Nature Genetics.

[51]  Wei Zhang,et al.  ELT-1, a GATA-like transcription factor, is required for epidermal cell fates in Caenorhabditis elegans embryos. , 1997, Genes & development.

[52]  M. Sohrmann,et al.  An activating mutation in a Caenorhabditis elegans Gs protein induces neural degeneration. , 1997, Genes & development.

[53]  M. Chalfie,et al.  Genetic interactions affecting touch sensitivity in Caenorhabditis elegans. , 1996, Proceedings of the National Academy of Sciences of the United States of America.

[54]  D. Moerman,et al.  The mec-8 gene of C. elegans encodes a protein with two RNA recognition motifs and regulates alternative splicing of unc-52 transcripts. , 1996, Development.

[55]  M. Bosenberg,et al.  lag-1, a gene required for lin-12 and glp-1 signaling in Caenorhabditis elegans, is homologous to human CBF1 and Drosophila Su(H). , 1996, Development.

[56]  Min Han,et al.  The C. elegans ksr-1 gene encodes a novel raf-related kinase involved in Ras-mediated signal transduction , 1995, Cell.

[57]  H. Horvitz,et al.  The ksr-1 gene encodes a novel protein kinase involved in Ras-mediated signaling in C. elegans , 1995, Cell.

[58]  J. Sulston,et al.  The genome of Caenorhabditis elegans. , 1995, Proceedings of the National Academy of Sciences of the United States of America.

[59]  Min Han,et al.  sur-2, a novel gene, functions late in the let-60 ras-mediated signaling pathway during Caenorhabditis elegans vulval induction. , 1995, Genes & development.

[60]  J. Ahringer Embryonic tissue differentiation in Caenorhabditis elegans requires dif‐1, a gene homologous to mitochondrial solute carriers. , 1995, The EMBO journal.

[61]  H. Horvitz,et al.  The Caenorhabditis elegans gene mek-2 is required for vulval induction and encodes a protein similar to the protein kinase MEK. , 1995, Genes & development.

[62]  Yishi Jin,et al.  Control of type-D GABAergic neuron differentiation by C. elegans UNC-30 homeodomain protein , 1994, Nature.

[63]  J Kimble,et al.  lag-2 may encode a signaling ligand for the GLP-1 and LIN-12 receptors of C. elegans. , 1994, Development.

[64]  Frans E. Tax,et al.  Sequence of C. elegans lag-2 reveals a cell-signalling domain shared with Delta and Serrate of Drosophila , 1994, Nature.

[65]  H. Horvitz,et al.  C. elegans cell survival gene ced-9 encodes a functional homolog of the mammalian proto-oncogene bcl-2 , 1994, Cell.

[66]  M. Chalfie,et al.  Green fluorescent protein as a marker for gene expression. , 1994, Science.

[67]  D M Miller,et al.  Dominant unc-37 mutations suppress the movement defect of a homeodomain mutation in unc-4, a neural specificity gene in Caenorhabditis elegans. , 1993, Genetics.

[68]  J. Thomas,et al.  Thinking about genetic redundancy. , 1993, Trends in genetics : TIG.

[69]  R. Plasterk,et al.  Target-selected gene inactivation in Caenorhabditis elegans by using a frozen transposon insertion mutant bank. , 1993, Proceedings of the National Academy of Sciences of the United States of America.

[70]  A. Alfonso,et al.  The Caenorhabditis elegans unc-17 gene: a putative vesicular acetylcholine transporter. , 1993, Science.

[71]  M. Nonet,et al.  Synaptic function is impaired but not eliminated in C. elegans mutants lacking synaptotagmin , 1993, Cell.

[72]  P. Sternberg,et al.  Role of a raf proto-oncogene during Caenorhabditis elegans vulval development. , 1993, Philosophical transactions of the Royal Society of London. Series B, Biological sciences.

[73]  L. Avery,et al.  The genetics of feeding in Caenorhabditis elegans. , 1993, Genetics.

[74]  B. Meyer,et al.  Independent domains of the Sdc-3 protein control sex determination and dosage compensation in C. elegans , 1993, Cell.

[75]  J. Culotti,et al.  UNC-6, a laminin-related protein, guides cell and pioneer axon migrations in C. elegans , 1992, Neuron.

[76]  M. Hengartner,et al.  Caenorhabditis elegans gene ced-9 protects cells from programmed cell death , 1992, Nature.

[77]  R. Hosono,et al.  The unc‐18 Gene Encodes a Novel Protein Affecting the Kinetics of Acetylcholine Metabolism in the Nematode Caenorhabditis elegans , 1992, Journal of neurochemistry.

[78]  Bruce Bowerman,et al.  skn-1, a maternally expressed gene required to specify the fate of ventral blastomeres in the early C. elegans embryo , 1992, Cell.

[79]  G. Rubin,et al.  Ras1 and a putative guanine nucleotide exchange factor perform crucial steps in signaling by the sevenless protein tyrosine kinase , 1991, Cell.

[80]  D. Baillie,et al.  Genetic analysis of a major segment [LGV(left)] of the genome of Caenorhabditis elegans. , 1991, Genetics.

[81]  S. Brenner,et al.  A phorbol ester/diacylglycerol-binding protein encoded by the unc-13 gene of Caenorhabditis elegans. , 1991, Proceedings of the National Academy of Sciences of the United States of America.

[82]  J Kimble,et al.  Two homologous regulatory genes, lin-12 and glp-1, have overlapping functions. , 1991, Development.

[83]  J. Pringle,et al.  Use of a screen for synthetic lethal and multicopy suppressee mutants to identify two new genes involved in morphogenesis in Saccharomyces cerevisiae , 1991, Molecular and cellular biology.

[84]  A. Otsuka,et al.  The C. elegans unc-104 4 gene encodes a putative kinesin heavy chain-like protein , 1991, Neuron.

[85]  H. Horvitz,et al.  Caenorhabditis elegans ras gene let-60 acts as a switch in the pathway of vulval induction , 1990, Nature.

[86]  P. Sternberg,et al.  let-60, a gene that specifies cell fates during C. elegans vulval induction, encodes a ras protein , 1990, Cell.

[87]  D. Hall,et al.  The unc-5, unc-6, and unc-40 genes guide circumferential migrations of pioneer axons and mesodermal cells on the epidermis in C. elegans , 1990, Neuron.

[88]  H. Horvitz,et al.  The multivulva phenotype of certain Caenorhabditis elegans mutants results from defects in two functionally redundant pathways. , 1989, Genetics.

[89]  C. Nusbaum,et al.  The Caenorhabditis elegans gene sdc-2 controls sex determination and dosage compensation in XX animals. , 1989, Genetics.

[90]  N. Munakata [Genetics of Caenorhabditis elegans]. , 1989, Tanpakushitsu kakusan koso. Protein, nucleic acid, enzyme.

[91]  B. Meyer,et al.  xol-1: A gene that controls the male modes of both sex determination and X chromosome dosage compensation in C. elegans , 1988, Cell.

[92]  D. Baillie,et al.  The unc-22(IV) region of Caenorhabditis elegans: genetic analysis of lethal mutations. , 1988, Genetics.

[93]  D. Morton,et al.  Identification of genes required for cytoplasmic localization in early C. elegans embryos , 1988, Cell.

[94]  Leon Avery,et al.  A cell that dies during wild-type C. elegans development can function as a neuron in a ced-3 mutant , 1987, Cell.

[95]  H. Schnabel,et al.  The glp-1 locus and cellular interactions in early C. elegans embryos , 1987, Cell.

[96]  J. Priess,et al.  Cellular interactions in early C. elegans embryos , 1987, Cell.

[97]  A. Coulson,et al.  Toward a physical map of the genome of the nematode Caenorhabditis elegans. , 1986, Proceedings of the National Academy of Sciences of the United States of America.

[98]  A. Fire Integrative transformation of Caenorhabditis elegans , 1986, The EMBO journal.

[99]  H. Horvitz,et al.  Genetic control of programmed cell death in the nematode C. elegans , 1986, Cell.

[100]  H. Horvitz,et al.  Identification and characterization of 22 genes that affect the vulval cell lineages of the nematode Caenorhabditis elegans. , 1985, Genetics.

[101]  J. Sulston,et al.  The embryonic cell lineage of the nematode Caenorhabditis elegans. , 1983, Developmental biology.

[102]  J. Sulston,et al.  Mutations affecting programmed cell deaths in the nematode Caenorhabditis elegans. , 1983, Science.

[103]  D. Baillie,et al.  The genetic analysis of a reciprocal translocation, eT1(III; V), in Caenorhabditis elegans. , 1981, Genetics.

[104]  J E Sulston,et al.  Abnormal cell lineages in mutants of the nematode Caenorhabditis elegans. , 1981, Developmental biology.

[105]  J. Hodgkin More sex-determination mutants of Caenorhabditis elegans. , 1980, Genetics.

[106]  J. Sulston,et al.  Post-embryonic cell lineages of the nematode, Caenorhabditis elegans. , 1977, Developmental biology.

[107]  P. Sternberg,et al.  Pattern formation during C. elegans vulval induction. , 2001, Current topics in developmental biology.

[108]  Cori Bargmann,et al.  The SAD-1 Kinase Regulates Presynaptic Vesicle Clustering and Axon Termination , 2001, Neuron.

[109]  J. Kaplan,et al.  G alphas-induced neurodegeneration in Caenorhabditis elegans. , 1998, The Journal of neuroscience : the official journal of the Society for Neuroscience.

[110]  J. Berg Genome sequence of the nematode C. elegans: a platform for investigating biology. , 1998, Science.

[111]  D. Riddle C. Elegans II , 1998 .

[112]  Henry F. Epstein,et al.  Caenorhabditis elegans : modern biological analysis of an organism , 1995 .

[113]  P. Anderson Chapter 2 Mutagenesis , 1995 .

[114]  H. Horvitz,et al.  A MAP kinase homolog, mpk-1, is involved in ras-mediated induction of vulval cell fates in Caenorhabditis elegans. , 1994, Genes & development.

[115]  Min Han,et al.  Suppression of activated Let-60 ras protein defines a role of Caenorhabditis elegans Sur-1 MAP kinase in vulval differentiation. , 1994, Genes & development.

[116]  H. Horvitz,et al.  Genes involved in two Caenorhabditis elegans cell-signaling pathways. , 1992, Cold Spring Harbor symposia on quantitative biology.

[117]  N. MaruyamaI,et al.  Caenorhabditis elegansのunc‐13遺伝子がコードするホルボールエステル/ジアシルグリセロール結合蛋白質 , 1991 .

[118]  H. Horvitz,et al.  The multivulva phenotype of certain C. elegans mutants results from defects in two functionally redundant pathways , 1989 .

[119]  R. K. Herman Crossover suppressors and balanced recessive lethals in Caenorhabditis elegans. , 1978, Genetics.