Intentional Nonlinearity in Energy Harvesting Systems

The success of portable electronics, remote sensing, and surveillance equipment is dependent upon the availability of remote power. While batteries can sometimes fulfill this role over short time intervals, batteries are often undesirable due to their finite life span, need for replacement and environmental impact. Instead, researchers have begun investigating methods of scavenging energy from the environment to eliminate the need for batteries or to simply prolong their life. While solar, chemical and thermal sources of energy transfer are sometimes viable, many have recognized the abundance of environmental disturbances that cause either rigid body motion or structural vibrations. This paper describes recent research efforts focused on the intentional use of nonlinearity to enhance the capabilities of energy harvesting systems. In addition, this paper identifies some of the primary challenges that arise in nonlinear harvesters and some new strategies to resolve these challenges. For example, nonlinearities can often result in multiple attractors with both desirable and undesirable responses that may co-exist. I will describe an approach that uses small perturbations to steer the dynamic response to the desirable attractor, thus leveraging the basins of attraction. Other examples will highlight the potential for nonlinear electromechanical transduction and comparisons for single frequency, multi-frequency, and stochastic environments.

[1]  David A W Barton,et al.  Energy harvesting from vibrations with a nonlinear oscillator , 2010 .

[2]  Jeffrey H. Lang,et al.  A variable-capacitance vibration-to-electric energy harvester , 2006, IEEE Transactions on Circuits and Systems I: Regular Papers.

[3]  Daniel J. Inman,et al.  On the optimal energy harvesting from a vibration source using a PZT stack , 2009 .

[4]  Saibal Roy,et al.  A micro electromagnetic generator for vibration energy harvesting , 2007 .

[5]  Kawal Sawhney,et al.  A planar refractive x-ray lens made of nanocrystalline diamond , 2010 .

[6]  Daniel J. Inman,et al.  Generation and Storage of Electricity from Power Harvesting Devices , 2005 .

[7]  Heath Hofmann,et al.  Damping as a result of piezoelectric energy harvesting , 2004 .

[8]  Francois Costa,et al.  Generation of electrical energy for portable devices: Comparative study of an electromagnetic and a piezoelectric system , 2004 .

[9]  Brian P. Mann,et al.  Uncertainty in performance for linear and nonlinear energy harvesting strategies , 2012 .

[10]  K. W. Wang,et al.  Energy Harvester Synthesis Via Coupled Linear-Bistable System With Multistable Dynamics , 2014 .

[11]  D. Dane Quinn,et al.  The Effect of Non-linear Piezoelectric Coupling on Vibration-based Energy Harvesting , 2009 .

[12]  Thiago Seuaciuc-Osório,et al.  Energy harvesting under excitations of time-varying frequency , 2010 .

[13]  Ehab F. El-Saadany,et al.  A wideband vibration-based energy harvester , 2008 .

[14]  Shadrach Roundy,et al.  On the Effectiveness of Vibration-based Energy Harvesting , 2005 .

[15]  Benjamin A. M. Owens,et al.  Melnikov theoretic methods for characterizing the dynamics of the bistable piezoelectric inertial generator in complex spectral environments , 2012 .

[16]  P. Wright,et al.  Resonance tuning of piezoelectric vibration energy scavenging generators using compressive axial preload , 2006 .

[17]  I. Kovacic,et al.  Potential benefits of a non-linear stiffness in an energy harvesting device , 2010 .

[18]  S. Shokat,et al.  電界応答性キトサン-ポリ(N,N-ジメチルアクリルアミド)セミIPNゲル膜およびそれらの誘電,熱および膨潤キャラクタリゼーション , 2013 .

[19]  Sundman Bo.,et al.  エレクトロウェッティングディスプレイの油脱ぬれパターンの観測と光学的意味 | 文献情報 | J-GLOBAL 科学技術総合リンクセンター , 2008 .

[20]  Toshikazu Nishida,et al.  A MEMS acoustic energy harvester , 2006 .

[21]  D. Inman,et al.  Comparison of Piezoelectric Energy Harvesting Devices for Recharging Batteries , 2005 .

[22]  S. Shahruz Design of mechanical band-pass filters for energy scavenging , 2006 .

[23]  Ryan L. Harne,et al.  A review of the recent research on vibration energy harvesting via bistable systems , 2013 .

[24]  M. G. Prasad,et al.  A vibration energy harvesting device with bidirectional resonance frequency tunability , 2008 .

[25]  Steve G Burrow,et al.  Modelling and experimental characterization of an energy harvester with bi-stable compliance characteristics , 2011 .

[26]  Brian P. Mann,et al.  Investigations of a nonlinear energy harvester with a bistable potential well , 2010 .

[27]  B. Mann,et al.  Nonlinear dynamics for broadband energy harvesting: Investigation of a bistable piezoelectric inertial generator , 2010 .

[28]  Hugh W. Coleman,et al.  Experimentation and Uncertainty Analysis for Engineers , 1989 .

[29]  Brian P. Mann,et al.  Linear and nonlinear electromagnetic coupling models in vibration-based energy harvesting , 2012 .

[30]  S. Beeby,et al.  Energy harvesting vibration sources for microsystems applications , 2006 .

[31]  Brian P. Mann,et al.  Energy criterion for potential well escapes in a bistable magnetic pendulum , 2009 .

[32]  N. G. Stephen,et al.  On energy harvesting from ambient vibration , 2006 .

[33]  S. M. Shahruz,et al.  Limits of performance of mechanical band-pass filters used in energy scavenging , 2006 .

[34]  Chengkuo Lee,et al.  Electromagnetic energy harvesting from vibrations of multiple frequencies , 2009 .

[35]  Jan M. Rabaey,et al.  Energy scavenging for wireless sensor networks , 2003 .

[36]  Igor Neri,et al.  Nonlinear oscillators for vibration energy harvesting , 2009 .

[37]  S. Beeby,et al.  Optimization of an Electromagnetic Energy Harvesting Device , 2006, IEEE Transactions on Magnetics.

[38]  David P. Arnold,et al.  Spherical, rolling magnet generators for passive energy harvesting from human motion , 2009 .

[39]  B. Mann,et al.  Reversible hysteresis for broadband magnetopiezoelastic energy harvesting , 2009 .

[40]  Brian P. Bernard,et al.  Increasing viability of nonlinear energy harvesters by adding an excited dynamic magnifier , 2017 .

[41]  A. Erturk,et al.  On the Role of Nonlinearities in Vibratory Energy Harvesting: A Critical Review and Discussion , 2014 .

[42]  Neil D. Sims,et al.  Energy harvesting from the nonlinear oscillations of magnetic levitation , 2009 .

[43]  D. Inman,et al.  Nonlinear piezoelectricity in electroelastic energy harvesters: Modeling and experimental identification , 2010 .

[44]  Brian P. Mann,et al.  Harmonic balance analysis of the bistable piezoelectric inertial generator , 2012 .