Strong Exciton-Plasmon Coupling in MoS2 Coupled with Plasmonic Lattice.

We demonstrate strong exciton-plasmon coupling in silver nanodisk arrays integrated with monolayer MoS2 via angle-resolved reflectance microscopy spectra of the coupled system. Strong exciton-plasmon coupling is observed with the exciton-plasmon coupling strength up to 58 meV at 77 K, which also survives at room temperature. The strong coupling involves three types of resonances: MoS2 excitons, localized surface plasmon resonances (LSPRs) of individual silver nanodisks and plasmonic lattice resonances of the nanodisk array. We show that the exciton-plasmon coupling strength, polariton composition, and dispersion can be effectively engineered by tuning the geometry of the plasmonic lattice, which makes the system promising for realizing novel two-dimensional plasmonic polaritonic devices.

[1]  Hartmut Haug,et al.  Exciton-polariton Bose-Einstein condensation , 2010 .

[2]  Timothy C. Berkelbach,et al.  Exciton binding energy and nonhydrogenic Rydberg series in monolayer WS(2). , 2014, Physical review letters.

[3]  R. Zeis,et al.  High-mobility field-effect transistors based on transition metal dichalcogenides , 2004 .

[4]  Chang-Hee Cho,et al.  All-optical active switching in individual semiconductor nanowires. , 2012, Nature nanotechnology.

[5]  D. Ballarini,et al.  All-optical polariton transistor , 2012, 2013 Conference on Lasers & Electro-Optics Europe & International Quantum Electronics Conference CLEO EUROPE/IQEC.

[6]  Gregor Weihs,et al.  Polariton lasing vs. photon lasing in a semiconductor microcavity , 2003, Proceedings of the National Academy of Sciences of the United States of America.

[7]  Gil Refael,et al.  Topological Polaritons , 2014, 1406.4156.

[8]  HighWire Press Proceedings of the Royal Society of London. Series A, Containing papers of a mathematical and physical character , 1934 .

[9]  Antti-Pekka Eskelinen,et al.  Plasmonic surface lattice resonances at the strong coupling regime. , 2014, Nano letters.

[10]  Keliang He,et al.  Control of valley polarization in monolayer MoS2 by optical helicity. , 2012, Nature nanotechnology.

[11]  J. Shan,et al.  Atomically thin MoS₂: a new direct-gap semiconductor. , 2010, Physical review letters.

[12]  G. Rubio‐Bollinger,et al.  Optical identification of atomically thin dichalcogenide crystals , 2010, 1003.2602.

[13]  Lord Rayleigh,et al.  On the Dynamical Theory of Gratings , 1907 .

[14]  I. Shelykh,et al.  Optical circuits based on polariton neurons in semiconductor microcavities. , 2008, Physical review letters.

[15]  J. Feist,et al.  Thermalization and cooling of plasmon-exciton polaritons: towards quantum condensation. , 2012, Physical review letters.

[16]  V. Kravets,et al.  Extremely narrow plasmon resonances based on diffraction coupling of localized plasmons in arrays of metallic nanoparticles. , 2008, Physical review letters.

[17]  V. Savona,et al.  Bose–Einstein condensation of exciton polaritons , 2006, Nature.

[18]  Bumsu Lee,et al.  Fano Resonance and Spectrally Modified Photoluminescence Enhancement in Monolayer MoS2 Integrated with Plasmonic Nanoantenna Array. , 2015, Nano letters.

[19]  M. S. Skolnick,et al.  Exciton–polaritons in van der Waals heterostructures embedded in tunable microcavities , 2015, Nature Communications.

[20]  Yilei Li,et al.  Probing symmetry properties of few-layer MoS2 and h-BN by optical second-harmonic generation. , 2013, Nano letters.

[21]  William L. Barnes,et al.  Strong coupling between surface plasmon-polaritons and organic molecules in subwavelength hole arrays , 2005 .

[22]  Lukin,et al.  Nonlinear optics and quantum entanglement of ultraslow single photons , 2000, Physical review letters.

[23]  T. Espinosa-Ortega,et al.  Complete architecture of integrated photonic circuits based on AND and NOT logic gates of exciton polaritons in semiconductor microcavities , 2013, 1302.1935.

[24]  C. Manzoni,et al.  Real-time observation of ultrafast Rabi oscillations between excitons and plasmons in metal nanostructures with J-aggregates , 2013, Nature Photonics.

[25]  Madan Dubey,et al.  Graphene/MoS2 hybrid technology for large-scale two-dimensional electronics. , 2014, Nano letters.

[26]  Peter Nordlander,et al.  Plexcitonic nanoparticles: plasmon-exciton coupling in nanoshell-J-aggregate complexes. , 2008, Nano letters.

[27]  S. Louie,et al.  Optical spectrum of MoS2: many-body effects and diversity of exciton states. , 2013, Physical review letters.

[28]  A. Krasheninnikov,et al.  Effects of confinement and environment on the electronic structure and exciton binding energy of MoS2 from first principles , 2012 .

[29]  R. Rosenfeld Nature , 2009, Otolaryngology--head and neck surgery : official journal of American Academy of Otolaryngology-Head and Neck Surgery.

[30]  D. S. Bradshaw,et al.  Photonics , 2023, 2023 International Conference on Electrical Engineering and Photonics (EExPolytech).

[31]  Fengnian Xia,et al.  Strong light–matter coupling in two-dimensional atomic crystals , 2014, Nature Photonics.

[32]  P. Törmä,et al.  Spatial coherence properties of organic molecules coupled to plasmonic surface lattice resonances in the weak and strong coupling regimes. , 2014, Physical review letters.

[33]  J. Rivas,et al.  Surface lattice resonances strongly coupled to Rhodamine 6G excitons: tuning the plasmon-exciton-polariton mass and composition. , 2013, Optics express.

[34]  I. Carusotto,et al.  Superfluidity of polaritons in semiconductor microcavities , 2009 .

[35]  H. Giessen,et al.  Waveguide-plasmon polaritons: strong coupling of photonic and electronic resonances in a metallic photonic crystal slab. , 2003, Physical review letters.

[36]  Gang Hee Han,et al.  Seeded growth of highly crystalline molybdenum disulphide monolayers at controlled locations , 2015, Nature Communications.

[37]  R. Agarwal,et al.  Resolving parity and order of Fabry-Pérot modes in semiconductor nanostructure waveguides and lasers: Young's interference experiment revisited. , 2014, Nano letters.

[38]  S. Xiao,et al.  Slow-light enhancement of Beer-Lambert-Bouguer absorption , 2007, physics/0703059.

[39]  A. Splendiani,et al.  Emerging photoluminescence in monolayer MoS2. , 2010, Nano letters.