CircBTBD7 inhibits adipogenesis via the miR-183/SMAD4 axis.

[1]  Xinran Yang,et al.  RNA-seq analysis reveals the critical role of the novel lncRNA BIANCR in intramuscular adipogenesis through the ERK1/2 signaling pathway , 2023, Journal of Animal Science and Biotechnology.

[2]  Jianfang Wang,et al.  RNA-Seq and lipidomics reveal different adipogenic processes between bovine perirenal and intramuscular adipocytes , 2022, Adipocyte.

[3]  B. Sun,et al.  Proliferation of bovine myoblast by LncPRRX1 via regulation of the miR-137/CDC42 axis. , 2022, International journal of biological macromolecules.

[4]  L. Niu,et al.  LncRNA-Mediated Adipogenesis in Different Adipocytes , 2022, International journal of molecular sciences.

[5]  Zhenqiang Sun,et al.  Roles of exosomal circRNAs in tumour immunity and cancer progression , 2022, Cell Death & Disease.

[6]  Hong Chen,et al.  CircRNA Profiling Reveals CircPPARγ Modulates Adipogenic Differentiation via Sponging miR-92a-3p. , 2022, Journal of agricultural and food chemistry.

[7]  Ling-Ling Chen,et al.  Circular RNAs: Characterization, cellular roles, and applications , 2022, Cell.

[8]  Burton B. Yang,et al.  Specific expression and functions of circular RNAs , 2022, Cell Death & Differentiation.

[9]  Xia Qin,et al.  MiR-183 regulates the differentiation of osteoblasts in the development of osteoporosis by targeting Smad4. , 2021, Acta histochemica.

[10]  A. Cruz-Hernández,et al.  Expression of miRNA in obesity and insulin resistance: a review. , 2021, Endokrynologia Polska.

[11]  Yan Zheng,et al.  Bovine Stearoyl-CoA Desaturase 1 Promotes Adipogenesis by Activating the PPARγ Receptor. , 2020, Journal of agricultural and food chemistry.

[12]  Yihao Tian,et al.  CircRNA inhibits DNA damage repair by interacting with host gene , 2020, Molecular Cancer.

[13]  C. Ebermann,et al.  Recent advances in understanding circular RNAs , 2020, F1000Research.

[14]  Ling-Ling Chen The expanding regulatory mechanisms and cellular functions of circular RNAs , 2020, Nature Reviews Molecular Cell Biology.

[15]  A. Schürmann,et al.  Epigenetic contribution to obesity , 2020, Mammalian Genome.

[16]  Zhiye Wu,et al.  Circular RNA-protein interactions: functions, mechanisms, and identification , 2020, Theranostics.

[17]  Tongshan Wang,et al.  CircRNAs in cancer metabolism: a review , 2019, Journal of Hematology & Oncology.

[18]  Sebastian Kadener,et al.  Past, present, and future of circRNAs , 2019, The EMBO journal.

[19]  Jørgen Kjems,et al.  The biogenesis, biology and characterization of circular RNAs , 2019, Nature Reviews Genetics.

[20]  Jun Zhou,et al.  miR-183 modulated cell proliferation and apoptosis in ovarian cancer through the TGF-β/Smad4 signaling pathway , 2019, International journal of molecular medicine.

[21]  Jiazhong Guo,et al.  MiR-183 promotes preadipocyte differentiation by suppressing Smad4 in goats. , 2018, Gene.

[22]  Raju C Reddy,et al.  Transforming growth factor β suppresses peroxisome proliferator-activated receptor γ expression via both SMAD binding and novel TGF-β inhibitory elements. , 2017, The Biochemical journal.

[23]  M. Schmid,et al.  A circRNA from SEPALLATA3 regulates splicing of its cognate mRNA through R-loop formation , 2017, Nature Plants.

[24]  Tian Liu,et al.  Circles reshaping the RNA world: from waste to treasure , 2017, Molecular Cancer.

[25]  L. Zan,et al.  Molecular Characterization and Transcriptional Regulation Analysis of the Bovine PDHB Gene , 2016, PloS one.

[26]  L. Zan,et al.  Tissue expression analysis, cloning and characterization of the 5′-regulatory region of the bovine FABP3 gene , 2016, Frontiers in Veterinary Science.

[27]  A. Regassa,et al.  Molecular Regulation of Adipogenesis and Potential Anti-Adipogenic Bioactive Molecules , 2016, International journal of molecular sciences.

[28]  A. Li,et al.  Tissue expression analysis, cloning, and characterization of the 5'-regulatory region of the bovine fatty acid binding protein 4 gene. , 2015, Journal of animal science.

[29]  E. Mueller Understanding the variegation of fat: novel regulators of adipocyte differentiation and fat tissue biology. , 2014, Biochimica et biophysica acta.

[30]  Samy Lamouille,et al.  Molecular mechanisms of epithelial–mesenchymal transition , 2014, Nature Reviews Molecular Cell Biology.

[31]  Bruce M. Spiegelman,et al.  What We Talk About When We Talk About Fat , 2014, Cell.

[32]  T. Pieler,et al.  Programming Pluripotent Precursor Cells Derived from Xenopus Embryos to Generate Specific Tissues and Organs , 2010, Genes.

[33]  M. Whitfield,et al.  PPARγ Downregulation by TGFß in Fibroblast and Impaired Expression and Function in Systemic Sclerosis: A Novel Mechanism for Progressive Fibrogenesis , 2010, PloS one.

[34]  Kenneth M. Yamada,et al.  Btbd7 Regulates Epithelial Cell Dynamics and Branching Morphogenesis , 2010, Science.

[35]  H. Aburatani,et al.  COUP-TFII acts downstream of Wnt/β-catenin signal to silence PPARγ gene expression and repress adipogenesis , 2009, Proceedings of the National Academy of Sciences.

[36]  E. Okine,et al.  PPARgamma and GLUT-4 expression as developmental regulators/markers for preadipocyte differentiation into an adipocyte. , 2007, Domestic animal endocrinology.

[37]  O. MacDougald,et al.  Adipocyte differentiation from the inside out , 2006, Nature Reviews Molecular Cell Biology.

[38]  Youngsoo Kim,et al.  Identification of novel PPARgamma target genes in primary human adipocytes. , 2006, Gene.

[39]  Ying E. Zhang,et al.  Smad-dependent and Smad-independent pathways in TGF-β family signalling , 2003, Nature.

[40]  K. Kinzler,et al.  Human Smad3 and Smad4 are sequence-specific transcription activators. , 1998, Molecular cell.

[41]  M. Tsai,et al.  Mediation of Sonic hedgehog-induced expression of COUP-TFII by a protein phosphatase. , 1997, Science.