Optimization of hybrid systems

An overview of dynamic optimization problems with hybrid systems embedded is presented. The control parameterization approach is examined in detail, where the possibility of mode switching within the hybrid system causes nonsmoothness in the Master problem, thus invalidating gradient based solvers. To handle this, a decomposition approach is proposed that divides the general problem into smooth subproblems. The subproblem of determining the optimal mode sequence given fixed transition times is considered for continuous time linear time varying hybrid systems. A mixed-integer reformulation of the problem is proposed that retains the linear structure of the embedded hybrid system. A deterministic branch-and-cut framework incorporating outer approximation cuts and a dynamic bounds tightening heuristic is then employed to solve the nonconvex mixed-integer problem to guaranteed global optimality with a finite number of iterations. It is shown that the dynamic bounds tightening heuristic can have a dramatic effect on accelerating convergence of the algorithm. Future directions for research are also discussed, including the application of recent developments in semi-infinite programming for the formal safety verification of processes under uncertainty.

[1]  Anders Rantzer,et al.  Convex dynamic programming for hybrid systems , 2002, IEEE Trans. Autom. Control..

[2]  P. I. Barton,et al.  Parametric sensitivity functions for hybrid discrete/continuous systems , 1999 .

[3]  Paul I. Barton,et al.  Bounding Linear Time Varying Hybrid Systems with Time Events 1 , 2004 .

[4]  C. Adjiman,et al.  Global optimization of mixed‐integer nonlinear problems , 2000 .

[5]  Paul I. Barton,et al.  Dynamic optimization of hybrib systems , 1998 .

[6]  Paul I. Barton,et al.  Global solution of semi-infinite programs , 2004 .

[7]  Paul I. Barton,et al.  Modeling, simulation, sensitivity analysis, and optimization of hybrid systems , 2002, TOMC.

[8]  P. I. Barton,et al.  Global Solution of Optimization Problems with Parameter-Embedded Linear Dynamic Systems , 2004 .

[9]  PAUL I. BARTON,et al.  Bounding the Solutions of Parameter Dependent Nonlinear Ordinary Differential Equations , 2005, SIAM J. Sci. Comput..

[10]  Thomas A. Henzinger,et al.  The Algorithmic Analysis of Hybrid Systems , 1995, Theor. Comput. Sci..

[11]  John Guckenheimer,et al.  A Dynamical Simulation Facility for Hybrid Systems , 1993, Hybrid Systems.

[12]  Paul I. Barton,et al.  Global optimization of linear hybrid systems with explicit transitions , 2004, Syst. Control. Lett..

[13]  Alberto Bemporad,et al.  Control of systems integrating logic, dynamics, and constraints , 1999, Autom..

[14]  Johannes P. Schlöder,et al.  An efficient multiple shooting based reduced SQP strategy for large-scale dynamic process optimization. Part 1: theoretical aspects , 2003, Comput. Chem. Eng..

[15]  Paul I. Barton,et al.  Global Optimization Of Linear Hybrid Systems With Varying Transition Times , 2008, SIAM J. Control. Optim..

[16]  Ken R. Morison,et al.  Optimization of multistage processes described by differential-algebraic equations , 1986 .

[17]  Rembert Reemtsen,et al.  Numerical Methods for Semi-Infinite Programming: A Survey , 1998 .

[18]  K. Teo,et al.  Control parametrization enhancing technique for time optimal control problems , 1997 .

[19]  Marko Mäkelä,et al.  Survey of Bundle Methods for Nonsmooth Optimization , 2002, Optim. Methods Softw..

[20]  Pieter J. Mosterman,et al.  An Overview of Hybrid Simulation Phenomena and Their Support by Simulation Packages , 1999, HSCC.

[21]  R. Brusch,et al.  Solution of highly constrained optimal control problems using nonlinear programming , 1970 .

[22]  K. Teo,et al.  The control parameterization enhancing transform for constrained optimal control problems , 1999, The Journal of the Australian Mathematical Society. Series B. Applied Mathematics.

[23]  Alberto Bemporad,et al.  Synthesis of state-feedback optimal controllers for continuous-time switched linear systems , 2002, Proceedings of the 41st IEEE Conference on Decision and Control, 2002..

[24]  F. Glover IMPROVED LINEAR INTEGER PROGRAMMING FORMULATIONS OF NONLINEAR INTEGER PROBLEMS , 1975 .

[25]  Kok Lay Teo,et al.  A Unified Computational Approach to Optimal Control Problems , 1991 .

[26]  H. Witsenhausen A class of hybrid-state continuous-time dynamic systems , 1966 .

[27]  J. E. Cuthrell,et al.  On the optimization of differential-algebraic process systems , 1987 .

[28]  Paul I. Barton,et al.  The modelling and simulation of combined discrete/continuous processes , 1992 .

[29]  P. I. Barton,et al.  Global Mixed-Integer Dynamic Optimization , 2005 .

[30]  Paul I. Barton,et al.  Design of process operations using hybrid dynamic optimization , 2004, Comput. Chem. Eng..

[31]  A. Rantzer,et al.  Optimal control of hybrid systems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[32]  R. Sargent,et al.  Solution of a Class of Multistage Dynamic Optimization Problems. 2. Problems with Path Constraints , 1994 .

[33]  V. Borkar,et al.  A unified framework for hybrid control: model and optimal control theory , 1998, IEEE Trans. Autom. Control..

[34]  H. Sussmann,et al.  A maximum principle for hybrid optimal control problems , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[35]  Paul I. Barton,et al.  Global Optimization with Nonlinear Ordinary Differential Equations , 2006, J. Glob. Optim..

[36]  E. Balas,et al.  Mixed 0-1 Programming by Lift-and-Project in a Branch-and-Cut Framework , 1996 .

[37]  Alberto Bemporad,et al.  Verification of Hybrid Systems via Mathematical Programming , 1999, HSCC.

[38]  Nilay Shah,et al.  Modelling and optimisation of general hybrid systems in the continuous time domain , 1998 .

[39]  Olaf Stursberg,et al.  Control of Switched Hybrid Systems Based on Disjunctive Formulations , 2002 .

[40]  A. I. Rouban Sensitivity coefficients for discontinuous many-dimensional dynamic systems with delay time , 1998, 1998 4th International Conference on Actual Problems of Electronic Instrument Engineering Proceedings. APEIE-98 (Cat. No.98EX179).

[41]  P. I. Barton,et al.  Outer approximation algorithms for separable nonconvex mixed-integer nonlinear programs , 2004, Math. Program..

[42]  B. Piccoli Necessary conditions for hybrid optimization , 1999, Proceedings of the 38th IEEE Conference on Decision and Control (Cat. No.99CH36304).

[43]  F. Clarke Optimization And Nonsmooth Analysis , 1983 .

[44]  Paul I. Barton,et al.  Modeling of combined discrete/continuous processes , 1994 .

[45]  P. I. Barton,et al.  Dynamic optimization of hybrid systems , 1998 .

[46]  Paul I. Barton,et al.  Interval Methods for Semi-Infinite Programs , 2005, Comput. Optim. Appl..

[47]  Ramon E. Moore Methods and applications of interval analysis , 1979, SIAM studies in applied mathematics.

[48]  P. I. Barton,et al.  Efficient sensitivity analysis of large-scale differential-algebraic systems , 1997 .

[49]  Christos G. Cassandras,et al.  Optimal control of a class of hybrid systems , 2001, IEEE Trans. Autom. Control..

[50]  M. Branicky,et al.  Algorithms for optimal hybrid control , 1995, Proceedings of 1995 34th IEEE Conference on Decision and Control.

[51]  Paul I. Barton,et al.  Generalized branch-and-cut framework for mixed-integer nonlinear optimization problems , 2000 .

[52]  V. D. Dimitriadis,et al.  Modeling and safety verification of discrete/continuous processing systems , 1997 .

[53]  Olaf Stursberg,et al.  Applied Hybrid System Optimization: An Empirical Investigation of Complexity ? , 2004 .

[54]  Bo Lincoln,et al.  LQR optimization of linear system switching , 2002, IEEE Trans. Autom. Control..

[55]  Julio R. Banga,et al.  Optimization of hybrid discrete/continuous dynamic systems , 2000 .

[56]  D. Mayne,et al.  Algorithm Models for Nondifferentiable Optimization , 1985 .

[57]  K. Schittkowski NLPQL: A fortran subroutine solving constrained nonlinear programming problems , 1986 .

[58]  Robert Mifflin,et al.  An Algorithm for Constrained Optimization with Semismooth Functions , 1977, Math. Oper. Res..

[59]  Peter E. Caines,et al.  On the Optimal Control of Hybrid Systems: Optimization of Trajectories, Switching Times, Location Schedules , 2003, HSCC.

[60]  A. Giua,et al.  Optimal control of autonomous linear systems switched with a pre-assigned finite sequence , 2001, Proceeding of the 2001 IEEE International Symposium on Intelligent Control (ISIC '01) (Cat. No.01CH37206).

[61]  Karl Henrik Johansson,et al.  Dynamical properties of hybrid automata , 2003, IEEE Trans. Autom. Control..

[62]  R. Brusch,et al.  Solution of Highly Constrained Optimal Control Problems Using Nonlinear Programing , 1973 .

[63]  Panos J. Antsaklis,et al.  Optimal control of switched systems based on parameterization of the switching instants , 2004, IEEE Transactions on Automatic Control.

[64]  L. Liao,et al.  Optimal control of systems with continuous and discrete states , 1993, Proceedings of 32nd IEEE Conference on Decision and Control.

[65]  Nikolaos V. Sahinidis,et al.  Global optimization of mixed-integer nonlinear programs: A theoretical and computational study , 2004, Math. Program..