A matrix-free isogeometric Galerkin method for Karhunen-Loève approximation of random fields using tensor product splines, tensor contraction and interpolation based quadrature

[1]  Bert Jüttler,et al.  Fast formation of isogeometric Galerkin matrices via integration by interpolation and look-up , 2020 .

[2]  S. Rahman,et al.  Stochastic isogeometric analysis in linear elasticity , 2020 .

[3]  P. Spanos,et al.  A polynomial chaos method for arbitrary random inputs using B-splines , 2020 .

[4]  Sharif Rahman,et al.  A Spline Chaos Expansion , 2019, SIAM/ASA J. Uncertain. Quantification.

[5]  Zhan Kang,et al.  Stochastic isogeometric analysis method for plate structures with random uncertainty , 2019, Comput. Aided Geom. Des..

[6]  Giancarlo Sangalli,et al.  Fast formation and assembly of finite element matrices with application to isogeometric linear elasticity , 2019, Computer Methods in Applied Mechanics and Engineering.

[7]  H. Speleers,et al.  Explicit error estimates for spline approximation of arbitrary smoothness in isogeometric analysis , 2019, Numerische Mathematik.

[8]  Di Wu,et al.  Spectral stochastic isogeometric analysis for linear stability analysis of plate , 2019, Computer Methods in Applied Mechanics and Engineering.

[9]  Joel Nothman,et al.  SciPy 1.0-Fundamental Algorithms for Scientific Computing in Python , 2019, ArXiv.

[10]  Di Wu,et al.  Spectral stochastic isogeometric analysis of free vibration , 2019, Computer Methods in Applied Mechanics and Engineering.

[11]  Guangyao Li,et al.  Isogeometric generalized n th order perturbation-based stochastic method for exact geometric modeling of (composite) structures: Static and dynamic analysis with random material parameters , 2019, Computer Methods in Applied Mechanics and Engineering.

[12]  T. Shibutani,et al.  Development of stochastic isogeometric analysis (SIGA) method for uncertainty in shape , 2018, International Journal for Numerical Methods in Engineering.

[13]  W. Gao,et al.  Spectral stochastic isogeometric analysis for static response of FGM plate with material uncertainty , 2018, Thin-Walled Structures.

[14]  Ramin Jahanbin,et al.  An isogeometric collocation method for efficient random field discretization , 2018, International Journal for Numerical Methods in Engineering.

[15]  A. Bressan,et al.  Sum factorization techniques in Isogeometric Analysis , 2018, Computer Methods in Applied Mechanics and Engineering.

[16]  Alessandra Sestini,et al.  Efficient quadrature rules based on spline quasi-interpolation for application to IGA-BEMs , 2018, J. Comput. Appl. Math..

[17]  Tadej Kanduc,et al.  A Study on Spline Quasi-interpolation Based Quadrature Rules for the Isogeometric Galerkin BEM , 2018, Advanced Methods for Geometric Modeling and Numerical Simulation.

[18]  Alessandra Sestini,et al.  An adaptive IgA‐BEM with hierarchical B‐splines based on quasi‐interpolation quadrature schemes , 2018, International Journal for Numerical Methods in Engineering.

[19]  Sharif Rahman,et al.  A Galerkin isogeometric method for Karhunen–Loève approximation of random fields , 2018, Computer Methods in Applied Mechanics and Engineering.

[20]  Di Wu,et al.  Spectral stochastic isogeometric analysis of linear elasticity , 2018 .

[21]  Giancarlo Sangalli,et al.  Matrix-free weighted quadrature for a computationally efficient isogeometric k-method , 2017, Computer Methods in Applied Mechanics and Engineering.

[22]  Shoaib Kamil,et al.  The tensor algebra compiler , 2017, Proc. ACM Program. Lang..

[23]  Quanling Deng,et al.  Spectral approximation properties of isogeometric analysis with variable continuity , 2017, Computer Methods in Applied Mechanics and Engineering.

[24]  Hyuk-Chun Noh,et al.  Stochastic isogeometric analysis of free vibration of functionally graded plates considering material randomness , 2017 .

[25]  Thomas J. R. Hughes,et al.  Optimal and reduced quadrature rules for tensor product and hierarchically refined splines in isogeometric analysis , 2017 .

[26]  Giancarlo Sangalli,et al.  Fast formation of isogeometric Galerkin matrices by weighted quadrature , 2016, 1605.01238.

[27]  Siu Kwan Lam,et al.  Numba: a LLVM-based Python JIT compiler , 2015, LLVM '15.

[28]  Helmut Harbrecht,et al.  Efficient approximation of random fields for numerical applications , 2015, Numer. Linear Algebra Appl..

[29]  Giancarlo Sangalli,et al.  Nonlinear static isogeometric analysis of arbitrarily curved Kirchhoff-Love shells , 2015, International Journal of Mechanical Sciences.

[30]  Bert Jüttler,et al.  Integration by interpolation and look-up for Galerkin-based isogeometric analysis , 2015 .

[31]  Alessandro Reali,et al.  Finite element and NURBS approximations of eigenvalue, boundary-value, and initial-value problems , 2014 .

[32]  I. Papaioannou,et al.  Numerical methods for the discretization of random fields by means of the Karhunen–Loève expansion , 2014 .

[33]  Vincenzo Ilario Carbone,et al.  Karhunen–Loève decomposition of random fields based on a hierarchical matrix approach , 2013 .

[34]  Y. Saad,et al.  Numerical Methods for Large Eigenvalue Problems , 2011 .

[35]  Gaël Varoquaux,et al.  The NumPy Array: A Structure for Efficient Numerical Computation , 2011, Computing in Science & Engineering.

[36]  Robert Michael Kirby,et al.  From h to p efficiently: Implementing finite and spectral/hp element methods to achieve optimal performance for low- and high-order discretisations , 2010, J. Comput. Phys..

[37]  Thomas J. R. Hughes,et al.  Isogeometric Analysis: Toward Integration of CAD and FEA , 2009 .

[38]  Hermann G. Matthies,et al.  Application of hierarchical matrices for computing the Karhunen–Loève expansion , 2009, Computing.

[39]  G. Stefanou The stochastic finite element method: Past, present and future , 2009 .

[40]  Alessandro Reali,et al.  Duality and unified analysis of discrete approximations in structural dynamics and wave propagation : Comparison of p-method finite elements with k-method NURBS , 2008 .

[41]  Elisabeth Ullmann,et al.  Computational aspects of the stochastic finite element method , 2007 .

[42]  Alessandro Reali,et al.  Studies of Refinement and Continuity in Isogeometric Structural Analysis (Preprint) , 2007 .

[43]  Jens Markus Melenk,et al.  Fast algorithms for setting up the stiffness matrix in hp-FEM: a comparison , 2006 .

[44]  Christoph Schwab,et al.  Karhunen-Loève approximation of random fields by generalized fast multipole methods , 2006, J. Comput. Phys..

[45]  T. Hughes,et al.  Isogeometric analysis : CAD, finite elements, NURBS, exact geometry and mesh refinement , 2005 .

[46]  E. Rank,et al.  High order finite elements for shells , 2005 .

[47]  Boris N. Khoromskij,et al.  Hierarchical Kronecker tensor-product approximations , 2005, J. Num. Math..

[48]  Andreas Keese,et al.  Numerical Solution of Systems with Stochastic Uncertainties : A General Purpose Framework for Stochastic Finite Elements , 2004 .

[49]  Vikram S. Adve,et al.  LLVM: a compilation framework for lifelong program analysis & transformation , 2004, International Symposium on Code Generation and Optimization, 2004. CGO 2004..

[50]  K. Phoon,et al.  Implementation of Karhunen-Loeve expansion for simulation using a wavelet-Galerkin scheme , 2002 .

[51]  Dongbin Xiu,et al.  The Wiener-Askey Polynomial Chaos for Stochastic Differential Equations , 2002, SIAM J. Sci. Comput..

[52]  K. Atkinson The Numerical Solution of Integral Equations of the Second Kind , 1997 .

[53]  Richard H. Bartels,et al.  Integrating Products of B-Splines , 1992, SIAM J. Sci. Comput..

[54]  R. Ghanem,et al.  Stochastic Finite Elements: A Spectral Approach , 1990 .

[55]  Armen Der Kiureghian,et al.  The stochastic finite element method in structural reliability , 1988 .

[56]  S. Orszag Spectral methods for problems in complex geometries , 1980 .

[57]  A. Mukherjea,et al.  Real and Functional Analysis , 1978 .

[58]  D. W. Arthur The Solution of Fredholm Integral Equations Using Spline Functions , 1973 .

[59]  J. Mercer Functions of Positive and Negative Type, and their Connection with the Theory of Integral Equations , 1909 .

[60]  Y. Saad Numerical Methods for Large Eigenvalue Problems , 2011 .

[61]  Wolfgang Dahmen,et al.  Compression Techniques for Boundary Integral Equations - Asymptotically Optimal Complexity Estimates , 2006, SIAM J. Numer. Anal..

[62]  Andreas Keese,et al.  Review of Recent Developments in the Numerical Solution of Stochastic Partial Differential Equations (Stochastic Finite Elements)A , 2003 .

[63]  Robert E. Melchers,et al.  Structural Reliability: Analysis and Prediction , 1987 .

[64]  Kari Karhunen,et al.  Über lineare Methoden in der Wahrscheinlichkeitsrechnung , 1947 .

[65]  Dr. M. G. Worster Methods of Mathematical Physics , 1947, Nature.

[66]  R. Kanwal Linear Integral Equations , 1925, Nature.