On Constructing Minimum Spanning Trees in k-Dimensional Spaces and Related Problems

The problem of finding a minimum spanning tree connecting n points in a k-dimensional space is discussed under three common distance metrics -- Euclidean, rectilinear, and $L_\infty$. By employing a subroutine that solves the post office problem, we show that, for fixed k $\geq$ 3, such a minimum spanning tree can be found in time O($n^{2-a(k)} {(log n)}^{1-a(k)}$), where a(k) = $2^{-(k+1)}$. The bound can be improved to O(${(n log n)}^{1.8}$) for points in the 3-dimensional Euclidean space. We also obtain o($n^2$) algorithms for finding a farthest pair in a set of n points and for other related problems.

[1]  R. Buck Partition of Space , 1943 .

[2]  J. Kruskal On the shortest spanning subtree of a graph and the traveling salesman problem , 1956 .

[3]  R. Prim Shortest connection networks and some generalizations , 1957 .

[4]  Edsger W. Dijkstra,et al.  A note on two problems in connexion with graphs , 1959, Numerische Mathematik.

[5]  K. B. Haley,et al.  Programming, Games and Transportation Networks , 1966 .

[6]  Donald Ervin Knuth,et al.  The Art of Computer Programming , 1968 .

[7]  Charles T. Zahn,et al.  Graph-Theoretical Methods for Detecting and Describing Gestalt Clusters , 1971, IEEE Transactions on Computers.

[8]  R. V. Slyke,et al.  Computing minimum spanning trees efficiently , 1972, ACM Annual Conference.

[9]  Donald E. Knuth,et al.  The art of computer programming: sorting and searching (volume 3) , 1973 .

[10]  Richard O. Duda,et al.  Pattern classification and scene analysis , 1974, A Wiley-Interscience publication.

[11]  Alfred V. Aho,et al.  The Design and Analysis of Computer Algorithms , 1974 .

[12]  Andrew Chi-Chih Yao,et al.  An O(|E| log log |V|) Algorithm for Finding Minimum Spanning Trees , 1975, Inf. Process. Lett..

[13]  Michael Ian Shamos,et al.  Closest-point problems , 1975, 16th Annual Symposium on Foundations of Computer Science (sfcs 1975).

[14]  Michael Ian Shamos,et al.  Geometric complexity , 1975, STOC.

[15]  Robert E. Tarjan,et al.  Finding Minimum Spanning Trees , 1976, SIAM J. Comput..

[16]  Michael Ian Shamos,et al.  Divide-and-conquer in multidimensional space , 1976, STOC '76.

[17]  Jon Louis Bentley,et al.  Fast Algorithms for Constructing Minimal Spanning Trees in Coordinate Spaces , 1978, IEEE Transactions on Computers.