Thiol antioxidants regulate angiotensin II AT1 and arginine vasopressin V1 receptor functions differently in vascular smooth muscle cells.

[1]  T. Morinelli,et al.  N-acetylcysteine decreases angiotensin II receptor binding in vascular smooth muscle cells. , 2005, Journal of the American Society of Nephrology : JASN.

[2]  H. Abboud,et al.  Angiotensin II-induced ERK1/ERK2 activation and protein synthesis are redox-dependent in glomerular mesangial cells. , 2004, The Biochemical journal.

[3]  Maristela L Onozato,et al.  Angiotensin II and Oxidative Stress in Dahl Salt-Sensitive Rat With Heart Failure , 2002, Hypertension.

[4]  W. Welch,et al.  A mouse model of angiotensin II slow pressor response: role of oxidative stress. , 2002, Journal of the American Society of Nephrology : JASN.

[5]  P. Tangkijvanich,et al.  Vasopressin-mediated mitogenic signaling in intestinal epithelial cells. , 2002, American journal of physiology. Cell physiology.

[6]  L. Juncos,et al.  Antioxidants Block Angiotensin II-Induced Increases in Blood Pressure and Endothelin , 2001, Hypertension.

[7]  S. Fluharty,et al.  Identification and function of disulfide bridges in the extracellular domains of the angiotensin II type 2 receptor. , 2001, Biochemistry.

[8]  J. Kreisberg,et al.  Arginine vasopressin stimulates mesangial cell proliferation by activating the epidermal growth factor receptor. , 2001, American journal of physiology. Renal physiology.

[9]  N. Cotte,et al.  Conserved aromatic residues in the transmembrane region VI of the V1a vasopressin receptor differentiate agonist vs. antagonist ligand binding. , 2000, European journal of biochemistry.

[10]  T. Taniguchi,et al.  Participation of Reactive Oxygen Intermediates in the Angiotensin II‐Activated Signaling Pathways in Vascular Smooth Muscle Cells , 2000, Annals of the New York Academy of Sciences.

[11]  T. Peng,et al.  Angiotensin II activation of insulin-like growth factor 1 receptor transcription is mediated by a tyrosine kinase-dependent redox-sensitive mechanism. , 1999, Arteriosclerosis, thrombosis, and vascular biology.

[12]  W R Taylor,et al.  Role of NADH/NADPH oxidase-derived H2O2 in angiotensin II-induced vascular hypertrophy. , 1998, Hypertension.

[13]  E. Jaimes,et al.  Angiotensin II induces superoxide anion production by mesangial cells. , 1998, Kidney international.

[14]  M. Shibuya,et al.  Angiotensin II type 1 receptor-induced extracellular signal-regulated protein kinase activation is mediated by Ca2+/calmodulin-dependent transactivation of epidermal growth factor receptor. , 1998, Circulation research.

[15]  G. H. Thoresen,et al.  Activation of p42/p44 mitogen‐activated protein kinase by angiotensin II, vasopressin, norepinephrine, and prostaglandin F2α in hepatocytes is sustained, and like the effect of epidermal growth factor, mediated through pertussis toxin‐sensitive mechanisms , 1998, Journal of cellular physiology.

[16]  H. Kawakatsu,et al.  Calcium-dependent Epidermal Growth Factor Receptor Transactivation Mediates the Angiotensin II-induced Mitogen-activated Protein Kinase Activation in Vascular Smooth Muscle Cells* , 1998, The Journal of Biological Chemistry.

[17]  J. Leor,et al.  Stimulation of 42/44 kDa mitogen-activated protein kinases by arginine vasopressin in rat cardiomyocytes. , 1998, Biochimica et biophysica acta.

[18]  I. Siemens,et al.  Cloning and expression of angiotensin II type 2 (AT2) receptors from murine neuroblastoma N1E-115 cells: evidence for AT2 receptor heterogeneity. , 1997, Brain research. Molecular brain research.

[19]  B. Berk,et al.  Angiotensin II stimulates MAP kinase kinase kinase activity in vascular smooth muscle cells, Role of Raf. , 1996, Circulation research.

[20]  D. Harrison,et al.  Angiotensin II-mediated hypertension in the rat increases vascular superoxide production via membrane NADH/NADPH oxidase activation. Contribution to alterations of vasomotor tone. , 1996, The Journal of clinical investigation.

[21]  T. Inagami,et al.  Disulfide bridges in extracellular domains of angiotensin II receptor type IA , 1995, Regulatory Peptides.

[22]  W. Greenlee,et al.  Identification of peptide binding residues in the extracellular domains of the AT1 receptor. , 1994, The Journal of biological chemistry.

[23]  R W Alexander,et al.  Angiotensin II stimulates NADH and NADPH oxidase activity in cultured vascular smooth muscle cells. , 1994, Circulation research.

[24]  D. Rabenstein,et al.  Characterization of the thiol/disulfide chemistry of neurohypophyseal peptide hormones by high-performance liquid chromatography. , 1993, Analytical chemistry.

[25]  S. Chaki,et al.  Identification of amino acid residues of rat angiotensin II receptor for ligand binding by site directed mutagenesis. , 1992, Biochemical and biophysical research communications.

[26]  J. Duncia,et al.  Discrimination of angiotensin II receptor subtypes by dithiothreitol. , 1989, European journal of pharmacology.

[27]  D. Butkus,et al.  Modulation of vasopressin action by reducing agents in Bufo marinus. , 1982, The American journal of physiology.

[28]  M. Greer,et al.  Differential effects of dithiothreitol and iodoacetamide on corticotropin-releasing factor (CRF) activity of bovine hypothalamic CRFs and vasopressin. , 1982, Endocrinology.

[29]  T. Meinertz,et al.  Increased NAD(P)H oxidase-mediated superoxide production in renovascular hypertension: evidence for an involvement of protein kinase C. , 1999, Kidney international.