Nasal delivery of donepezil HCl-loaded hydrogels for the treatment of Alzheimer’s disease

[1]  S. Frokjaer,et al.  Stability Testing of Liposomes During Storage , 2019, Liposome Technology.

[2]  A. Tekade,et al.  Nanostructured cubosomes in an in situ nasal gel system: an alternative approach for the controlled delivery of donepezil HCl to brain , 2019, Journal of liposome research.

[3]  Shulin Zhao,et al.  Self-assembled nanomaterials for synergistic antitumour therapy. , 2018, Journal of materials chemistry. B.

[4]  Nitesh V Janbandhu Comparative Physical and Chemical Stability Studies of Orlistat Liposomal Drug Delivery Systems , 2018, Asian Journal of Pharmaceutics.

[5]  Jagannath,et al.  Carbon Nanotube Functionalization and Radiation Induced Enhancements in the Sensitivity of Standalone Chemiresistors for Sensing Volatile Organic Compounds , 2018, ACS Applied Nano Materials.

[6]  S. Ramesh,et al.  Synthesis and characterization of karaya gum-g- poly (acrylic acid) hydrogels and in vitro release of hydrophobic quercetin , 2018, Polymer.

[7]  S. Antimisiaris,et al.  Nose‐to‐brain drug delivery: An update on clinical challenges and progress towards approval of anti‐Alzheimer drugs , 2018, Journal of controlled release : official journal of the Controlled Release Society.

[8]  Y. Chang,et al.  Higher levels of thyroxine may predict a favorable response to donepezil treatment in patients with Alzheimer disease: a prospective, case–control study , 2018, BMC Neuroscience.

[9]  A. Calpena,et al.  Development of a Nasal Donepezil-loaded Microemulsion for the Treatment of Alzheimer's Disease: in vitro and ex vivo Characterization. , 2018, CNS & neurological disorders drug targets.

[10]  C. Nativi,et al.  In situ mucoadhesive‐thermosensitive liposomal gel as a novel vehicle for nasal extended delivery of opiorphin , 2018, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[11]  K. Urayama,et al.  Peculiar extensibility of swollen statistical hydrogels with structural nanoheterogeneities , 2017 .

[12]  Di DomenicoFabio,et al.  The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. , 2017 .

[13]  M. Malinauskas,et al.  Microactuation and sensing using reversible deformations of laser-written polymeric structures , 2017, Nanotechnology.

[14]  D. Butterfield,et al.  The Triangle of Death in Alzheimer's Disease Brain: The Aberrant Cross-Talk Among Energy Metabolism, Mammalian Target of Rapamycin Signaling, and Protein Homeostasis Revealed by Redox Proteomics. , 2017, Antioxidants & redox signaling.

[15]  D. Butterfield,et al.  Oxidative Stress and the Triangle of Death in Alzheimer Disease Brain: The Aberrant Crosstalk among Energy Metabolism, MTOR Signaling and Protein Homeostasis Revealed by Redox Proteomics , 2016 .

[16]  Eduardo Costa de Figueiredo,et al.  Molecularly imprinted microparticles in lipid-based formulations for sustained release of donepezil. , 2016, European journal of pharmaceutical sciences : official journal of the European Federation for Pharmaceutical Sciences.

[17]  Mehdi Rezaeifara,et al.  Formulation and evaluation of diphenhydramine gel using different gelling agents , 2016 .

[18]  P. A. Soloman,et al.  Preparation of Chitosan-Polyvinyl Alcohol Blends and Studies on Thermal and Mechanical Properties , 2016 .

[19]  S. Zalba Design and in-vitro/in-vivo evaluation in colon cancer cells of targeted oxaliplatin liposomes to epidermal growth factor receptor by conjugation of different ligands , 2015 .

[20]  Shivayogi M Hugar,et al.  An In Vivo Study , 2015 .

[21]  A. Heidarinasab,et al.  Improving lithium carbonate therapeutics by pegylated liposomal technology: an in vivo study , 2015, Comparative Clinical Pathology.

[22]  Aiqin Wang,et al.  Highly efficient and selective adsorption of malachite green onto granular composite hydrogel , 2014 .

[23]  F. Movahedi,et al.  Efficacy of Cisplatin-loaded polybutyl cyanoacrylate nanoparticles on the glioblastoma , 2014, Tumor Biology.

[24]  K. Taniguchi,et al.  Histological and Lectin Histochemical Studies on the Olfactory and Respiratory Mucosae of the Sheep , 2013, The Journal of veterinary medical science.

[25]  Preeti K. Suresh,et al.  Bioadhesive buccal gels impregnated with fluconazole: formulation, in vitro and ex vivo characterization , 2014, Journal of Applied Pharmaceutical Science.

[26]  Haryanto,et al.  Fabrication of poly(ethylene oxide) hydrogels for wound dressing application using E-beam , 2014, Macromolecular Research.

[27]  R. Schubert,et al.  The effect of lipid composition and liposome size on the release properties of liposomes-in-hydrogel. , 2013, International journal of pharmaceutics.

[28]  M. Gremião,et al.  Rheological, mechanical, and bioadhesive behavior of hydrogels to optimize skin delivery systems , 2013, Drug development and industrial pharmacy.

[29]  S. Park,et al.  Preparation of quercetin and rutin-loaded ceramide liposomes and drug-releasing effect in liposome-in-hydrogel complex system. , 2013, Biochemical and biophysical research communications.

[30]  Yuan Yuan,et al.  Delivery of hydrophilic drug doxorubicin hydrochloride-targeted liver using apoAI as carrier , 2013, Journal of drug targeting.

[31]  J. Sangshetti,et al.  TASTE MASKING OF DONEPEZIL HYDROCHLORIDE USING DIFFERENT ION EXCHANGE RESINS- A COMPARATIVE STUDY , 2013 .

[32]  Soodabeh Davaran,et al.  Liposome: classification, preparation, and applications , 2013, Nanoscale Research Letters.

[33]  Fatemeh S. Alavi,et al.  Cytotoxicity of Liposomal Paclitaxel in Breast Cancer Cell Line MCF-7 , 2013, Indian Journal of Clinical Biochemistry.

[34]  Fatemeh S. Alavi,et al.  Drug Delivery of Hydroxyurea to Breast Cancer Using Liposomes , 2013, Indian Journal of Clinical Biochemistry.

[35]  D. Nagendrakumar,et al.  Formulation and evaluation of Ketoconazole niosomal gel drug delivery system , 2012, International journal of pharmaceutical investigation.

[36]  G. Leitinger,et al.  Chemical coupling of thiolated chitosan to preformed liposomes improves mucoadhesive properties , 2012, International journal of nanomedicine.

[37]  S. Karavana,et al.  BIOADHESIVE AND MECHANICAL PROPERTIES OF TRIAMCINOLONE ACETONIDE BUCCAL GELS , 2012 .

[38]  Guru Nānak THIOLATED CHITOSANS: A NOVEL MUCOADHESIVE POLYMERS: A REVIEW , 2012 .

[39]  M. A. Ughade,et al.  Liposome as a Drug Delivery System-A Review , 2012 .

[40]  Yitao Wang,et al.  Liposome-based delivery systems in plant polysaccharides , 2012 .

[41]  P. Ameh Physicochemical properties and rheological behaviour of Ficus glumosa gum in aqueous solution , 2012 .

[42]  W. Kong,et al.  A comparative study on the tissue distributions of rhubarb anthraquinones in normal and CCl4-injured rats orally administered rhubarb extract. , 2011, Journal of ethnopharmacology.

[43]  K. Kavitha,et al.  Novel Mucoadhesive Polymers -A Review , 2011 .

[44]  B. Conway,et al.  Grewia Gum 2: Mucoadhesive Properties of Compacts and Gels , 2011 .

[45]  J. Rojas,et al.  Formulation of a modified release metformin. HCl matrix tablet: influence of some hydrophilic polymers on release rate and in-vitro evaluation , 2011 .

[46]  S. Neau,et al.  Rheological and mucoadhesive characterization of poly(vinylpyrrolidone) hydrogels designed for nasal mucosal drug delivery , 2011, Archives of pharmacal research.

[47]  S. Sakhare,et al.  Stability Aspects of Liposomes , 2011 .

[48]  A. Tiwary,et al.  Cross-linked chitosan films: effect of cross-linking density on swelling parameters. , 2010, Pakistan journal of pharmaceutical sciences.

[49]  B. Alquadeib,et al.  Pharmacokinetics of ketorolac loaded to polyethylcyanoacrylate nanoparticles using UPLC MS/MS for its determination in rats. , 2010, International journal of pharmaceutics.

[50]  P. Mather,et al.  PEG−POSS Multiblock Polyurethanes: Synthesis, Characterization, and Hydrogel Formation , 2010 .

[51]  Prasanta Chowdhury,et al.  Kinetic modeling on drug release from controlled drug delivery systems. , 2010, Acta poloniae pharmaceutica.

[52]  M. Gremião,et al.  Mucoadhesive drug delivery systems , 2010 .

[53]  Yali Liang DRUG RELEASE AND PHARMACOKINETIC PROPERTIES OF LIPOSOMAL DB-67 , 2010 .

[54]  S. Van Vlierberghe,et al.  A New Approach for Adipose Tissue Regeneration Based on Human Mesenchymal Stem Cells in Contact to Hydrogels—an In Vitro Study , 2009 .

[55]  G. E. El Maghraby,et al.  Mucoadhesive Polymeric Hydrogels for Nasal Delivery of Acyclovir , 2009, Drug development and industrial pharmacy.

[56]  E. Hegazy,et al.  Preparation of Polyvinyl Pyrrolidone-Based Hydrogels by Radiation-Induced Crosslinking with Potential Application as Wound Dressing , 2008 .

[57]  F. Alanazi,et al.  Acyclovir Liposomes for Intranasal Systemic Delivery: Development and Pharmacokinetics Evaluation , 2008, Drug delivery.

[58]  V. Pokharkar,et al.  Studies on effect of pH on cross-linking of chitosan with sodium tripolyphosphate: A technical note , 2006, AAPS PharmSciTech.

[59]  K. Peh,et al.  Effect of carbopol and polyvinylpyrrolidone on the mechanical, rheological, and release properties of bioadhesive polyethylene glycol gels , 2000, AAPS PharmSciTech.

[60]  Andrzej Galat,et al.  Technical note , 2008, Comput. Biol. Chem..

[61]  Timo Laaksonen,et al.  Gold nanoparticles enable selective light-induced contents release from liposomes. , 2007, Journal of controlled release : official journal of the Controlled Release Society.

[62]  A. Metters,et al.  Hydrogels in controlled release formulations: network design and mathematical modeling. , 2006, Advanced drug delivery reviews.

[63]  M. Venkataranganna,et al.  Induction and evaluation of atherosclerosis in New Zealand white rabbits. , 2006, Indian journal of experimental biology.

[64]  M. Šen,et al.  Radiation synthesis of poly(N-vinyl-2-pyrrolidone)-kappa-carrageenan hydrogels and their use in wound dressing applications. I. Preliminary laboratory tests. , 2005, Journal of biomedical materials research. Part A.

[65]  F. Lin,et al.  Immobilization of chitosan gel with cross-linking reagent on PNIPAAm gel/PP nonwoven composites surface , 2005 .

[66]  K. Neeves Controlled Release Drug Delivery from Hydrogels Teacher ’ s Guide , 2005 .

[67]  R. Shanks,et al.  The effect of varied monomer composition on adhesive performance and peeling master curves for acrylic pressure-sensitive adhesives , 2004 .

[68]  H. Winter,et al.  Open-pore morphology of i-PP copolymer crystallized from a gel state in supercritical propane , 2004 .

[69]  Jeong-Ok Lim,et al.  Regional delivery of vancomycin using pluronic F-127 to inhibit methicillin resistant Staphylococcus aureus (MRSA) growth in chronic otitis media in vitro and in vivo. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[70]  A. Bernkop‐Schnürch,et al.  Thiolated chitosans: development and in vitro evaluation of a mucoadhesive, permeation enhancing oral drug delivery system. , 2004, Journal of controlled release : official journal of the Controlled Release Society.

[71]  Lisbeth Illum,et al.  Chitosan as a Novel Nasal Delivery System for Peptide Drugs , 1994, Pharmaceutical Research.

[72]  A. Alam,et al.  Design of liposome to improve encapsulation efficiency of gelonin and its effect on immunoreactivity and ribosome inactivating property , 1992, Molecular and Cellular Biochemistry.

[73]  P. Caliceti,et al.  Mucoadhesive thiolated chitosans as platforms for oral controlled drug delivery: synthesis and in vitro evaluation. , 2004, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[74]  A. Bernkop‐Schnürch,et al.  Thiolated polymers--thiomers: synthesis and in vitro evaluation of chitosan-2-iminothiolane conjugates. , 2003, International journal of pharmaceutics.

[75]  A. Bernkop‐Schnürch,et al.  In vitro evaluation of the viscoelastic properties of chitosan-thioglycolic acid conjugates. , 2003, European journal of pharmaceutics and biopharmaceutics : official journal of Arbeitsgemeinschaft fur Pharmazeutische Verfahrenstechnik e.V.

[76]  J. B. Park,et al.  Preparation and characterization of chitosan microparticles intended for controlled drug delivery. , 2002, International journal of pharmaceutics.

[77]  R. Cavalli,et al.  Intravenous Administration to Rabbits of Non-stealth and Stealth Doxorubicin-loaded Solid Lipid Nanoparticles at Increasing Concentrations of Stealth Agent: Pharmacokinetics and Distribution of Doxorubicin in Brain and Other Tissues , 2002, Journal of drug targeting.

[78]  Luxury Guide,et al.  AN OFFICIAL , 2002 .

[79]  Md. Selim Reza,et al.  Development of theophylline sustained release dosage form based on Kollidon SR. , 2002, Pakistan journal of pharmaceutical sciences.

[80]  Turner As Animal models of osteoporosis--necessity and limitations. , 2001 .

[81]  A. Turner Animal models of osteoporosis--necessity and limitations. , 2001, European cells & materials.

[82]  F. Mi,et al.  Kinetic study of chitosan-tripolyphosphate complex reaction and acid-resistive properties of the chitosan-tripolyphosphate gel beads prepared by in-liquid curing method , 1999 .

[83]  Claus-Michael Lehr,et al.  Bioadhesive Drug Delivery Systems : Fundamentals, Novel Approaches, and Development , 1999 .

[84]  C. Wong,et al.  An in-vitro method for buccal adhesion studies: importance of instrument variables. , 1999, International journal of pharmaceutics.

[85]  Hans Bisgaard,et al.  Bioadhesive microspheres as a potential nasal drug delivery system , 1987 .

[86]  A. Peterlin Diffusion with discontinuous swelling. IV. Type II diffusion into spherical particles , 1980 .

[87]  F. Szoka,et al.  Procedure for preparation of liposomes with large internal aqueous space and high capture by reverse-phase evaporation. , 1978, Proceedings of the National Academy of Sciences of the United States of America.