Persistence based online signal and trajectory simplification for mobile devices

We describe an online algorithm to simplify large volumes of location and sensor data on the source mobile device, by eliminating redundant data points and saving important ones. Our approach is to use topological persistence to identify large scale sharp features of a data stream. We show that for one-dimensional data streams such as trajectories, simplification based on topologically persistent features can be maintained online, such that each new data-point is processed in O(1) time. Our method extends to multi-resolution simplifications, where it identifies larger scale features that represent more important elements of data, and naturally eliminates noise and small deviations. The multi-resolution simplification is also maintained online in real time, at cost of O(1) per input point. Therefore it is lightweight and suitable for use in embedded sensors and mobile phones. The method can be applied to more general data streams such as sensor data to produce similar simplifications. Our experiments on real data show that this approach when applied to the curvature function of trajectory or sensor data produces compact simplifications with low approximation errors comparable to existing offline methods.

[1]  David H. Douglas,et al.  ALGORITHMS FOR THE REDUCTION OF THE NUMBER OF POINTS REQUIRED TO REPRESENT A DIGITIZED LINE OR ITS CARICATURE , 1973 .

[2]  M. Iri,et al.  Polygonal Approximations of a Curve — Formulations and Algorithms , 1988 .

[3]  Herbert Edelsbrunner,et al.  Topological Persistence and Simplification , 2000, Proceedings 41st Annual Symposium on Foundations of Computer Science.

[4]  Ouri Wolfson,et al.  Spatio-temporal data reduction with deterministic error bounds , 2003, DIALM-POMC '03.

[5]  Leonidas J. Guibas,et al.  Persistence barcodes for shapes , 2004, SGP '04.

[6]  Nirvana Meratnia,et al.  Spatiotemporal Compression Techniques for Moving Point Objects , 2004, EDBT.

[7]  Leonidas J. Guibas,et al.  A Barcode Shape Descriptor for Curve Point Cloud Data , 2022 .

[8]  Alexander Kolesnikov,et al.  Multiresolution polygonal approximation of digital curves , 2004, Proceedings of the 17th International Conference on Pattern Recognition, 2004. ICPR 2004..

[9]  Nabil H. Mustafa,et al.  Near-Linear Time Approximation Algorithms for Curve Simplification , 2005, Algorithmica.

[10]  Ouri Wolfson,et al.  On-line data reduction and the quality of history in moving objects databases , 2006, MobiDE '06.

[11]  Timos K. Sellis,et al.  Sampling Trajectory Streams with Spatiotemporal Criteria , 2006, 18th International Conference on Scientific and Statistical Database Management (SSDBM'06).

[12]  Mark de Berg,et al.  Streaming Algorithms for Line Simplification , 2007, SCG '07.

[13]  Pierre-François Marteau,et al.  Speeding up simplification of polygonal curves using nested approximations , 2007, Pattern Analysis and Applications.

[14]  Albert-László Barabási,et al.  Understanding individual human mobility patterns , 2008, Nature.

[15]  Xing Xie,et al.  Mining interesting locations and travel sequences from GPS trajectories , 2009, WWW '09.

[16]  Nikos Pelekis,et al.  Trajectory Compression under Network Constraints , 2009, SSTD.

[17]  Bernhard Mitschang,et al.  Usability analysis of compression algorithms for position data streams , 2010, GIS '10.

[18]  Mikkel Baun Kjærgaard,et al.  Energy-efficient trajectory tracking for mobile devices , 2011, MobiSys '11.

[19]  Joachim Gudmundsson,et al.  Detecting Commuting Patterns by Clustering Subtrajectories , 2011, Int. J. Comput. Geom. Appl..

[20]  Shashi Shekhar,et al.  Discovering interesting sub-paths in spatiotemporal datasets: a summary of results , 2011, GIS.

[21]  Ramesh Govindan,et al.  Energy-efficient positioning for smartphones using Cell-ID sequence matching , 2011, MobiSys '11.

[22]  S. S. Ravi,et al.  SQUISH: an online approach for GPS trajectory compression , 2011, COM.Geo.

[23]  Maike Buchin,et al.  Segmenting trajectories: A framework and algorithms using spatiotemporal criteria , 2011, J. Spatial Inf. Sci..

[24]  Thomas K. Peucker,et al.  2. Algorithms for the Reduction of the Number of Points Required to Represent a Digitized Line or its Caricature , 2011 .

[25]  Frank Dürr,et al.  Efficient real-time trajectory tracking , 2011, The VLDB Journal.

[26]  Philip S. Yu,et al.  Transportation mode detection using mobile phones and GIS information , 2011, GIS.

[27]  Maarten Löffler,et al.  Median Trajectories , 2010, Algorithmica.

[28]  Mo Li,et al.  IODetector: a generic service for indoor outdoor detection , 2012, SenSys '12.

[29]  Dieter Pfoser,et al.  On vehicle tracking data-based road network generation , 2012, SIGSPATIAL/GIS.

[30]  Pasi Fränti,et al.  A Fast $O(N)$ Multiresolution Polygonal Approximation Algorithm for GPS Trajectory Simplification , 2012, IEEE Transactions on Image Processing.

[31]  Arnold P. Boedihardjo,et al.  Model-driven matching and segmentation of trajectories , 2013, SIGSPATIAL/GIS.

[32]  Maarten Löffler,et al.  Segmentation of Trajectories for Non-Monotone Criteria , 2013, SODA.

[33]  James Biagioni,et al.  Thrifty tracking: online GPS tracking with low data uplink usage , 2013, SIGSPATIAL/GIS.

[34]  Yin Wang,et al.  Mining large-scale gps streams for connectivity refinement of road maps , 2013, SIGSPATIAL/GIS.

[35]  Cheng Long,et al.  Direction-Preserving Trajectory Simplification , 2013, Proc. VLDB Endow..

[36]  Mahesh K. Marina,et al.  A semi-supervised learning approach for robust indoor-outdoor detection with smartphones , 2014, SenSys.

[37]  Maarten Löffler,et al.  Segmentation of Trajectories on Nonmonotone Criteria , 2015, ACM Trans. Algorithms.