Discrete Graphical Models - An Optimization Perspective

This monograph is about discrete energy minimization for discrete graphical models. It considers graphical models, or, more precisely, maximum a posteriori inference for graphical models, purely as a combinatorial optimization problem. Modeling, applications, probabilistic interpretations and many other aspects are either ignored here or find their place in examples and remarks only. It covers the integer linear programming formulation of the problem as well as its linear programming, Lagrange and Lagrange decomposition-based relaxations. In particular, it provides a detailed analysis of the polynomially solvable acyclic and submodular problems, along with the corresponding exact optimization methods. Major approximate methods, such as message passing and graph cut techniques are also described and analyzed comprehensively. The monograph can be useful for undergraduate and graduate students studying optimization or graphical models, as well as for experts in optimization who want to have a look into graphical models. To make the monograph suitable for both categories of readers we explicitly separate the mathematical optimization background chapters from those specific to graphical models.

[1]  Brian A. Davey,et al.  An Introduction to Lattices and Order , 1989 .

[2]  Thomas Schoenemann,et al.  Generalized sequential tree-reweighted message passing , 2012, ArXiv.

[3]  Bogdan Savchynskyy,et al.  Maximum persistency via iterative relaxed inference with graphical models , 2015, 2015 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[4]  George L. Nemhauser,et al.  Handbooks in operations research and management science , 1989 .

[5]  Geir Dahl,et al.  Lagrangian-based methods for finding MAP solutions for MRF models , 2000, IEEE Trans. Image Process..

[6]  Boris Flach,et al.  Minimax problems of discrete optimization invariant under majority operators , 2014 .

[7]  Tamir Hazan,et al.  Norm-Product Belief Propagation: Primal-Dual Message-Passing for Approximate Inference , 2009, IEEE Transactions on Information Theory.

[8]  P. B. Coaker,et al.  Applied Dynamic Programming , 1964 .

[9]  Shigeo Abe DrEng Pattern Classification , 2001, Springer London.

[10]  Vladimir Kolmogorov,et al.  Generalized roof duality and bisubmodular functions , 2010, Discret. Appl. Math..

[11]  Sebastian Nowozin,et al.  A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems , 2014, International Journal of Computer Vision.

[12]  Tomás Werner,et al.  LP Relaxation of the Potts Labeling Problem Is as Hard as Any Linear Program , 2017, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[13]  Azriel Rosenfeld,et al.  Scene Labeling by Relaxation Operations , 1976, IEEE Transactions on Systems, Man, and Cybernetics.

[14]  Christoph Schnörr,et al.  Partial Optimality by Pruning for MAP-Inference with General Graphical Models , 2014, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[15]  O. Nelles,et al.  An Introduction to Optimization , 1996, IEEE Antennas and Propagation Magazine.

[16]  M. J. D. Powell,et al.  On search directions for minimization algorithms , 1973, Math. Program..

[17]  Václav Hlavác,et al.  Ten Lectures on Statistical and Structural Pattern Recognition , 2002, Computational Imaging and Vision.

[18]  Daphne Koller,et al.  Subproblem-Tree Calibration: A Unified Approach to Max-Product Message Passing , 2013, ICML.

[19]  Christoph Schnörr,et al.  MRF Inference by k-Fan Decomposition and Tight Lagrangian Relaxation , 2010, ECCV.

[20]  Franziska Wulf,et al.  Minimization Methods For Non Differentiable Functions , 2016 .

[21]  Christoph Schnörr,et al.  A study of Nesterov's scheme for Lagrangian decomposition and MAP labeling , 2011, CVPR 2011.

[22]  Pierre Hansen,et al.  Roof duality, complementation and persistency in quadratic 0–1 optimization , 1984, Math. Program..

[23]  Christoph Schnörr,et al.  Efficient MRF Energy Minimization via Adaptive Diminishing Smoothing , 2012, UAI.

[24]  Vladimir Kolmogorov,et al.  What energy functions can be minimized via graph cuts? , 2002, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[25]  Tommi S. Jaakkola,et al.  Fixing Max-Product: Convergent Message Passing Algorithms for MAP LP-Relaxations , 2007, NIPS.

[26]  Vladimir Kolmogorov,et al.  A New Look at Reweighted Message Passing , 2015, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[27]  Andrew Blake,et al.  Fusion Moves for Markov Random Field Optimization , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[28]  Ivan Kovtun,et al.  Partial Optimal Labeling Search for a NP-Hard Subclass of (max, +) Problems , 2003, DAGM-Symposium.

[29]  Bogdan Savchynskyy,et al.  A Dual Ascent Framework for Lagrangean Decomposition of Combinatorial Problems , 2017, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[30]  M. I. Schlesinger,et al.  Some solvable subclasses of structural recognition problems , 2000 .

[31]  Thomas Pock,et al.  Solving Dense Image Matching in Real-Time using Discrete-Continuous Optimization , 2016, ArXiv.

[32]  Daniel Huber,et al.  Complexity of Discrete Energy Minimization Problems , 2016, ECCV.

[33]  Rainer E. Burkard,et al.  Perspectives of Monge Properties in Optimization , 1996, Discret. Appl. Math..

[34]  Christopher Zach A Novel Tree Block-Coordinate Method for MAP Inference , 2015, GCPR.

[35]  Martin J. Wainwright,et al.  Message-passing for Graph-structured Linear Programs: Proximal Methods and Rounding Schemes , 2010, J. Mach. Learn. Res..

[36]  K. X. M. Tzeng,et al.  Convolutional Codes and 'Their Performance in Communication Systems , 1971 .

[37]  P. Tseng,et al.  On the convergence of the coordinate descent method for convex differentiable minimization , 1992 .

[38]  Aravindan Vijayaraghavan,et al.  Optimality of Approximate Inference Algorithms on Stable Instances , 2018, AISTATS.

[39]  Tomás Werner On Coordinate Minimization of Convex Piecewise-Affine Functions , 2017, ArXiv.

[40]  Hiroshi Ishikawa,et al.  Exact Optimization for Markov Random Fields with Convex Priors , 2003, IEEE Trans. Pattern Anal. Mach. Intell..

[41]  Carsten Rother,et al.  MPLP++: Fast, Parallel Dual Block-Coordinate Ascent for Dense Graphical Models , 2018, ECCV.

[42]  Tomas Werner,et al.  Revisiting the Decomposition Approach to Inference in Exponential Families and Graphical Models , 2009 .

[43]  Christoph Schnörr,et al.  Partial Optimality via Iterative Pruning for the Potts Model , 2013, SSVM.

[44]  Toby Walsh,et al.  Handbook of Constraint Programming , 2006, Handbook of Constraint Programming.

[45]  Sebastian Nowozin,et al.  Structured Learning and Prediction in Computer Vision , 2011, Found. Trends Comput. Graph. Vis..

[46]  Christoph Schnörr,et al.  Global MAP-Optimality by Shrinking the Combinatorial Search Area with Convex Relaxation , 2013, NIPS.

[47]  George B. Dantzig,et al.  Linear Programming 1: Introduction , 1997 .

[48]  Monique Guignard-Spielberg,et al.  Lagrangean decomposition: A model yielding stronger lagrangean bounds , 1987, Math. Program..

[49]  Pushmeet Kohli,et al.  Reduce, reuse & recycle: Efficiently solving multi-label MRFs , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[50]  Alexander Schrijver,et al.  Theory of linear and integer programming , 1986, Wiley-Interscience series in discrete mathematics and optimization.

[51]  Arie M. C. A. Koster,et al.  Treewidth computations II. Lower bounds , 2011, Inf. Comput..

[52]  Tommi S. Jaakkola,et al.  Tree Block Coordinate Descent for MAP in Graphical Models , 2009, AISTATS.

[53]  M. Guignard,et al.  Lagrangean decomposition for integer programming: theory and applications , 1987 .

[54]  Alexander Shekhovtsov,et al.  Higher order maximum persistency and comparison theorems , 2015, Comput. Vis. Image Underst..

[55]  Tommi S. Jaakkola,et al.  Tightening LP Relaxations for MAP using Message Passing , 2008, UAI.

[56]  Tomás Werner,et al.  How Hard Is the LP Relaxation of the Potts Min-Sum Labeling Problem? , 2014, EMMCVPR.

[57]  Berç Rustem,et al.  Solving MRF Minimization by Mirror Descent , 2012, ISVC.

[58]  Carsten Rother,et al.  FusionFlow: Discrete-continuous optimization for optical flow estimation , 2008, 2008 IEEE Conference on Computer Vision and Pattern Recognition.

[59]  Kenneth Steiglitz,et al.  Combinatorial Optimization: Algorithms and Complexity , 1981 .

[60]  Dorit S. Hochbaum,et al.  A Cut-Based Algorithm for the Nonlinear Dual of the Minimum Cost Network Flow Problem , 2004, Algorithmica.

[61]  M. Guignard Lagrangean relaxation , 2003 .

[62]  M. Shlezinger Syntactic analysis of two-dimensional visual signals in the presence of noise , 1976 .

[63]  Alexander Shekhovtsov,et al.  Maximum Persistency in Energy Minimization , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[64]  Dmitry M. Malioutov,et al.  Lagrangian Relaxation for MAP Estimation in Graphical Models , 2007, ArXiv.

[65]  Vladimir Kolmogorov,et al.  An Analysis of Convex Relaxations for MAP Estimation of Discrete MRFs , 2009, J. Mach. Learn. Res..

[66]  Yurii Nesterov,et al.  Introductory Lectures on Convex Optimization - A Basic Course , 2014, Applied Optimization.

[67]  Tomás Werner,et al.  A Linear Programming Approach to Max-Sum Problem: A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[68]  J. Besag Spatial Interaction and the Statistical Analysis of Lattice Systems , 1974 .

[69]  Amir Beck,et al.  On the Convergence of Block Coordinate Descent Type Methods , 2013, SIAM J. Optim..

[70]  Martin C. Cooper,et al.  Soft arc consistency revisited , 2010, Artif. Intell..

[71]  Martin J. Wainwright,et al.  MAP estimation via agreement on trees: message-passing and linear programming , 2005, IEEE Transactions on Information Theory.

[72]  Bogdan Savchynskyy,et al.  Exact MAP-Inference by Confining Combinatorial Search With LP Relaxation , 2018, AAAI.

[73]  Ofer Meshi,et al.  An Alternating Direction Method for Dual MAP LP Relaxation , 2011, ECML/PKDD.

[74]  Richard Szeliski,et al.  A Comparative Study of Energy Minimization Methods for Markov Random Fields with Smoothness-Based Priors , 2008, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[75]  Bjoern H. Menze,et al.  Bayesian Estimation of Smooth Parameter Maps for Dynamic Contrast-Enhanced MR Images with Block-ICM , 2006, 2006 Conference on Computer Vision and Pattern Recognition Workshop (CVPRW'06).

[76]  Nikos Komodakis,et al.  MRF Optimization via Dual Decomposition: Message-Passing Revisited , 2007, 2007 IEEE 11th International Conference on Computer Vision.

[77]  Olga Veksler,et al.  Fast Approximate Energy Minimization via Graph Cuts , 2001, IEEE Trans. Pattern Anal. Mach. Intell..

[78]  Tomás Werner,et al.  LP Relaxations of Some NP-Hard Problems Are as Hard as Any LP , 2017, SODA.

[79]  Christoph Schnörr,et al.  A bundle approach to efficient MAP-inference by Lagrangian relaxation , 2012, 2012 IEEE Conference on Computer Vision and Pattern Recognition.

[80]  Michael I. Jordan,et al.  Graphical Models, Exponential Families, and Variational Inference , 2008, Found. Trends Mach. Learn..

[81]  Éva Tardos,et al.  Approximation algorithms for classification problems with pairwise relationships: metric labeling and Markov random fields , 2002, JACM.

[82]  Peter Jeavons,et al.  Classifying the Complexity of Constraints Using Finite Algebras , 2005, SIAM J. Comput..

[83]  M. R. Rao,et al.  Combinatorial Optimization , 1992, NATO ASI Series.

[84]  Alok Aggarwal,et al.  Sequential Searching in Multidimensional Monotone Arrays , 1989 .

[85]  Recherche Opérationnelle,et al.  REVUE FRANÇAISE D'AUTOMATIQUE, D'INFORMATIQUE ET DE , 1985 .

[86]  Tomás Werner,et al.  Revisiting the Linear Programming Relaxation Approach to Gibbs Energy Minimization and Weighted Constraint Satisfaction , 2010, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[87]  Endre Boros,et al.  Pseudo-Boolean optimization , 2002, Discret. Appl. Math..

[88]  Ullrich Köthe,et al.  The Lazy Flipper: Efficient Depth-Limited Exhaustive Search in Discrete Graphical Models , 2012, ECCV.

[89]  Arie M. C. A. Koster,et al.  The partial constraint satisfaction problem: Facets and lifting theorems , 1998, Oper. Res. Lett..

[90]  Vladlen Koltun,et al.  Fast MRF Optimization with Application to Depth Reconstruction , 2014, 2014 IEEE Conference on Computer Vision and Pattern Recognition.

[91]  Brendan J. Frey,et al.  Factor graphs and the sum-product algorithm , 2001, IEEE Trans. Inf. Theory.

[92]  M. I. Schlesingera,et al.  Diffusion algorithms and structural recognition optimization problems , 2011 .

[93]  Paul Tseng,et al.  Dual coordinate ascent methods for non-strictly convex minimization , 1993, Math. Program..

[94]  Tomás Werner,et al.  Universality of the Local Marginal Polytope , 2013, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[95]  P. Tseng,et al.  Block-Coordinate Gradient Descent Method for Linearly Constrained Nonsmooth Separable Optimization , 2009 .

[96]  David L. Waltz,et al.  Generating Semantic Descriptions From Drawings of Scenes With Shadows , 1972 .

[97]  Vladimir Kolmogorov,et al.  On partial optimality in multi-label MRFs , 2008, ICML '08.

[98]  K. Schittkowski,et al.  NONLINEAR PROGRAMMING , 2022 .

[99]  Gerhard Reinelt,et al.  Towards Efficient and Exact MAP-Inference for Large Scale Discrete Computer Vision Problems via Combinatorial Optimization , 2013, 2013 IEEE Conference on Computer Vision and Pattern Recognition.

[100]  Judea Pearl,et al.  Probabilistic reasoning in intelligent systems , 1988 .

[101]  D. Schlesinger,et al.  TRANSFORMING AN ARBITRARY MINSUM PROBLEM INTO A BINARY ONE , 2006 .

[102]  Bjoern Andres,et al.  A Message Passing Algorithm for the Minimum Cost Multicut Problem , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[103]  Eric P. Xing,et al.  An Augmented Lagrangian Approach to Constrained MAP Inference , 2011, ICML.

[104]  Vladimir Kolmogorov,et al.  Minimizing Nonsubmodular Functions with Graph Cuts-A Review , 2007, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[105]  Philip H. S. Torr,et al.  Improved Moves for Truncated Convex Models , 2008, J. Mach. Learn. Res..

[106]  Tomás Werner,et al.  Relative Interior Rule in Block-Coordinate Minimization , 2019, ArXiv.

[107]  Nikos Komodakis,et al.  MRF Energy Minimization and Beyond via Dual Decomposition , 2011, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[108]  Michael Goesele,et al.  A fast, massively parallel solver for large, irregular pairwise Markov random fields , 2016, High Performance Graphics.

[109]  Christoph Schnörr,et al.  Evaluation of a First-Order Primal-Dual Algorithm for MRF Energy Minimization , 2011, EMMCVPR.

[110]  Qiang Fu,et al.  Bethe-ADMM for Tree Decomposition based Parallel MAP Inference , 2013, UAI.

[111]  Vladimir Kolmogorov,et al.  Convergent Tree-Reweighted Message Passing for Energy Minimization , 2006, IEEE Transactions on Pattern Analysis and Machine Intelligence.

[112]  Satoru Iwata,et al.  Submodular function minimization , 2007, Math. Program..

[113]  Carsten Rother,et al.  A Study of Lagrangean Decompositions and Dual Ascent Solvers for Graph Matching , 2016, 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR).

[114]  Pushmeet Kohli,et al.  Markov Random Fields for Vision and Image Processing , 2011 .

[115]  D. Greig,et al.  Exact Maximum A Posteriori Estimation for Binary Images , 1989 .

[116]  Vladimir Kolmogorov,et al.  Optimizing Binary MRFs via Extended Roof Duality , 2007, 2007 IEEE Conference on Computer Vision and Pattern Recognition.

[117]  R. Tyrrell Rockafellar Conjugate Duality and Optimization , 1974 .

[118]  P. Tseng Convergence of a Block Coordinate Descent Method for Nondifferentiable Minimization , 2001 .

[119]  Bogdan Savchynskyy,et al.  Getting Feasible Variable Estimates from Infeasible Ones: MRF Local Polytope Study , 2012, 2013 IEEE International Conference on Computer Vision Workshops.

[120]  Nir Friedman,et al.  Probabilistic Graphical Models - Principles and Techniques , 2009 .

[121]  Arie M. C. A. Koster,et al.  Treewidth computations I. Upper bounds , 2010, Inf. Comput..

[122]  Tommi S. Jaakkola,et al.  Approximate inference in graphical models using lp relaxations , 2010 .

[123]  A. Shekhovtsov Exact and Partial Energy Minimization in Computer Vision , 2013 .

[124]  Sanjeev Arora,et al.  Computational Complexity: A Modern Approach , 2009 .

[125]  Dmitrij Schlesinger,et al.  Exact Solution of Permuted Submodular MinSum Problems , 2007, EMMCVPR.

[126]  Martin J. Wainwright,et al.  On the Optimality of Tree-reweighted Max-product Message-passing , 2005, UAI.

[127]  Olga Veksler,et al.  Fast approximate energy minimization via graph cuts , 2001, Proceedings of the Seventh IEEE International Conference on Computer Vision.

[128]  Daniel Průša,et al.  Relative Interior Rule in Block-Coordinate Descent , 2020, 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition (CVPR).

[129]  H KappesJörg,et al.  A Comparative Study of Modern Inference Techniques for Structured Discrete Energy Minimization Problems , 2015 .