A nonconforming pressure-robust finite element method for the Stokes equations on anisotropic meshes

Most classical finite element schemes for the (Navier-)Stokes equations are neither pressure-robust, nor are they inf-sup stable on general anisotropic triangulations. A lack of pressure-robustness may lead to large velocity errors, whenever the Stokes momentum balance is dominated by a strong and complicated pressure gradient. It is a consequence of a method, which does not exactly satisfy the divergence constraint. However, inf-sup stable schemes can often be made pressure-robust just by a recent, modified discretization of the exterior forcing term, using $\mathbf{H}(\operatorname{div})$-conforming velocity reconstruction operators. This approach has so far only been analyzed on shape-regular triangulations. The novelty of the present contribution is that the reconstruction approach for the Crouzeix-Raviart method, which has a stable Fortin operator on arbitrary meshes, is combined with results on the interpolation error on anisotropic elements for reconstruction operators of Raviart-Thomas and Brezzi-Douglas-Marini type, generalizing the method to a large class of anisotropic triangulations. Numerical examples confirm the theoretical results in a 2D and a 3D test case.

[1]  J. L. Synge The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems , 2012 .

[2]  Ricardo G. Durán,et al.  Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..

[3]  A. Ern,et al.  Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .

[4]  Volker John,et al.  Finite Element Methods for Incompressible Flow Problems , 2016 .

[5]  S. Nicaise,et al.  A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .

[6]  L. R. Scott,et al.  Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .

[7]  J. Nédélec Mixed finite elements in ℝ3 , 1980 .

[8]  Thomas,et al.  Local inequalities for anisotropic nite elements and theirapplication to convection-di usion problems , 1995 .

[9]  Dietmar Gallistl Rayleigh-Ritz approximation of the inf-sup constant for the divergence , 2019, Math. Comput..

[10]  Mark Ainsworth,et al.  A uniformly stable family of mixed hp‐finite elements with continuous pressures for incompressible flow , 2002 .

[11]  PHILIP L. LEDERER,et al.  Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements , 2016, SIAM J. Numer. Anal..

[12]  G. Barrenechea,et al.  The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes , 2017, IMA Journal of Numerical Analysis.

[13]  M. Krízek,et al.  On the maximum angle condition for linear tetrahedral elements , 1992 .

[14]  Serge Nicaise,et al.  Crouzeix-Raviart type finite elements on anisotropic meshes , 2001, Numerische Mathematik.

[15]  L. D. Marini,et al.  Two families of mixed finite elements for second order elliptic problems , 1985 .

[16]  F. Thomasset Finite element methods for Navier-Stokes equations , 1980 .

[17]  Alexander Linke,et al.  Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .

[18]  Alexander Linke,et al.  Optimal and Pressure-Independent $$L^2$$ Velocity Error Estimates for a Modified Crouzeix-Raviart Element with BDM Reconstructions , 2014 .

[19]  T. Apel Anisotropic Finite Elements: Local Estimates and Applications , 1999 .

[20]  Alexander Linke,et al.  Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element , 2015 .

[21]  Serge Nicaise,et al.  The inf-sup condition for low order elements on anisotropic meshes , 2004 .

[22]  Rolf Stenberg,et al.  Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.

[23]  I. Babuska,et al.  On locking and robustness in the finite element method , 1992 .

[24]  Volker John,et al.  On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..

[25]  Thomas Apel,et al.  Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra , 2019, SIAM J. Numer. Anal..

[26]  P. Raviart,et al.  A mixed finite element method for 2-nd order elliptic problems , 1977 .

[27]  Mark Ainsworth,et al.  The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..

[28]  Ricardo G. Durán,et al.  Error Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition , 2008, SIAM J. Numer. Anal..

[29]  Ricardo G. Durán,et al.  The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..

[30]  Christoph Lehrenfeld,et al.  Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.

[31]  Anders Logg,et al.  Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .

[32]  Alexander Linke,et al.  Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem , 2019, ArXiv.

[33]  Gunar Matthies,et al.  Nonconforming, Anisotropic, Rectangular Finite Elements of Arbitrary Order for the Stokes Problem , 2008, SIAM J. Numer. Anal..

[34]  Alexander Linke,et al.  Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem , 2017, Math. Comput..

[35]  Alexander Linke,et al.  On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .

[36]  P. Raviart,et al.  Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .

[37]  J. Schöberl C++11 Implementation of Finite Elements in NGSolve , 2014 .

[38]  Gunar Matthies,et al.  Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .