暂无分享,去创建一个
[1] J. L. Synge. The Hypercircle in Mathematical Physics: A Method for the Approximate Solution of Boundary Value Problems , 2012 .
[2] Ricardo G. Durán,et al. Error estimates for Raviart-Thomas interpolation of any order on anisotropic tetrahedra , 2008, Math. Comput..
[3] A. Ern,et al. Mathematical Aspects of Discontinuous Galerkin Methods , 2011 .
[4] Volker John,et al. Finite Element Methods for Incompressible Flow Problems , 2016 .
[5] S. Nicaise,et al. A non‐conforming finite element method with anisotropic mesh grading for the Stokes problem in domains with edges , 2001 .
[6] L. R. Scott,et al. Norm estimates for a maximal right inverse of the divergence operator in spaces of piecewise polynomials , 1985 .
[7] J. Nédélec. Mixed finite elements in ℝ3 , 1980 .
[8] Thomas,et al. Local inequalities for anisotropic nite elements and theirapplication to convection-di usion problems , 1995 .
[9] Dietmar Gallistl. Rayleigh-Ritz approximation of the inf-sup constant for the divergence , 2019, Math. Comput..
[10] Mark Ainsworth,et al. A uniformly stable family of mixed hp‐finite elements with continuous pressures for incompressible flow , 2002 .
[11] PHILIP L. LEDERER,et al. Divergence-free Reconstruction Operators for Pressure-Robust Stokes Discretizations with Continuous Pressure Finite Elements , 2016, SIAM J. Numer. Anal..
[12] G. Barrenechea,et al. The inf-sup stability of the lowest order Taylor–Hood pair on affine anisotropic meshes , 2017, IMA Journal of Numerical Analysis.
[13] M. Krízek,et al. On the maximum angle condition for linear tetrahedral elements , 1992 .
[14] Serge Nicaise,et al. Crouzeix-Raviart type finite elements on anisotropic meshes , 2001, Numerische Mathematik.
[15] L. D. Marini,et al. Two families of mixed finite elements for second order elliptic problems , 1985 .
[16] F. Thomasset. Finite element methods for Navier-Stokes equations , 1980 .
[17] Alexander Linke,et al. Pressure-robustness and discrete Helmholtz projectors in mixed finite element methods for the incompressible Navier--Stokes equations , 2016 .
[18] Alexander Linke,et al. Optimal and Pressure-Independent $$L^2$$ Velocity Error Estimates for a Modified Crouzeix-Raviart Element with BDM Reconstructions , 2014 .
[19] T. Apel. Anisotropic Finite Elements: Local Estimates and Applications , 1999 .
[20] Alexander Linke,et al. Optimal L2 velocity error estimate for a modified pressure-robust Crouzeix–Raviart Stokes element , 2015 .
[21] Serge Nicaise,et al. The inf-sup condition for low order elements on anisotropic meshes , 2004 .
[22] Rolf Stenberg,et al. Mixed hp-FEM on anisotropic meshes II: Hanging nodes and tensor products of boundary layer meshes , 1999, Numerische Mathematik.
[23] I. Babuska,et al. On locking and robustness in the finite element method , 1992 .
[24] Volker John,et al. On the Divergence Constraint in Mixed Finite Element Methods for Incompressible Flows , 2015, SIAM Rev..
[25] Thomas Apel,et al. Brezzi-Douglas-Marini interpolation of any order on anisotropic triangles and tetrahedra , 2019, SIAM J. Numer. Anal..
[26] P. Raviart,et al. A mixed finite element method for 2-nd order elliptic problems , 1977 .
[27] Mark Ainsworth,et al. The Stability of Mixed hp-Finite Element Methods for Stokes Flow on High Aspect Ratio Elements , 2000, SIAM J. Numer. Anal..
[28] Ricardo G. Durán,et al. Error Estimates for the Raviart-Thomas Interpolation Under the Maximum Angle Condition , 2008, SIAM J. Numer. Anal..
[29] Ricardo G. Durán,et al. The Maximum Angle Condition for Mixed and Nonconforming Elements: Application to the Stokes Equations , 1999, SIAM J. Numer. Anal..
[30] Christoph Lehrenfeld,et al. Towards computable flows and robust estimates for inf-sup stable FEM applied to the time-dependent incompressible Navier–Stokes equations , 2017, SeMA Journal.
[31] Anders Logg,et al. Automated Solution of Differential Equations by the Finite Element Method: The FEniCS Book , 2012 .
[32] Alexander Linke,et al. Pressure-robustness in quasi-optimal a priori estimates for the Stokes problem , 2019, ArXiv.
[33] Gunar Matthies,et al. Nonconforming, Anisotropic, Rectangular Finite Elements of Arbitrary Order for the Stokes Problem , 2008, SIAM J. Numer. Anal..
[34] Alexander Linke,et al. Quasi-optimality of a pressure-robust nonconforming finite element method for the Stokes-Problem , 2017, Math. Comput..
[35] Alexander Linke,et al. On the role of the Helmholtz decomposition in mixed methods for incompressible flows and a new variational crime , 2014 .
[36] P. Raviart,et al. Conforming and nonconforming finite element methods for solving the stationary Stokes equations I , 1973 .
[37] J. Schöberl. C++11 Implementation of Finite Elements in NGSolve , 2014 .
[38] Gunar Matthies,et al. Robust arbitrary order mixed finite element methods for the incompressible Stokes equations , 2014 .