Efficient local formulation for elasto-plastic corotational thin-walled beams

A local elasto-plastic formulation, based on a low-order nonlinear strain expression using Bernoulli beam kinematics, is presented in this paper. This element, together with the corotational framew ...

[1]  Werner Wagner,et al.  Finite element analysis of Saint–Venant torsion problem with exact integration of the elastic–plastic constitutive equations , 2001 .

[2]  C. Pacoste,et al.  Co-rotational beam elements with warping effects in instability problems , 2002 .

[3]  Filip C. Filippou,et al.  Non-linear spatial Timoshenko beam element with curvature interpolation , 2001 .

[4]  Kuo Mo Hsiao,et al.  Co-rotational finite element formulation for thin-walled beams with generic open section , 2006 .

[5]  J. C. Simo,et al.  A return mapping algorithm for plane stress elastoplasticity , 1986 .

[6]  Theodore V. Galambos,et al.  Nonuniform Torsion of Steel Beams in inelastic Range , 1969 .

[7]  F. Gruttmann,et al.  A mixed hybrid finite beam element with an interface to arbitrary three-dimensional material models , 2009 .

[8]  M. A. Crisfield,et al.  A unified co-rotational framework for solids, shells and beams , 1996 .

[9]  Z. X. Li,et al.  A mixed co‐rotational formulation of 2D beam element using vectorial rotational variables , 2006 .

[10]  Sven Klinkel,et al.  Using finite strain 3D‐material models in beam and shell elements , 2002 .

[11]  Shunsuke Baba,et al.  Plastic analysis of torsion of a prismatic beam , 1982 .

[12]  Carlos A. Felippa,et al.  A unified formulation of small-strain corotational finite elements: I. Theory , 2005 .

[13]  Werner Wagner,et al.  THEORY AND NUMERICS OF THREE-DIMENSIONAL BEAMS WITH ELASTOPLASTIC MATERIAL BEHAVIOUR ∗ , 2000 .

[14]  Jean-Marc Battini,et al.  Co-rotational beam elements in instability problems , 2002 .

[15]  Z. Li,et al.  A co-rotational formulation for 3D beam element using vectorial rotational variables , 2006 .

[16]  Werner Wagner,et al.  Shear stresses in prismatic beams with arbitrary cross‐sections , 1999 .

[17]  M. Géradin,et al.  A beam finite element non‐linear theory with finite rotations , 1988 .

[18]  Murray J. Clarke,et al.  Plastic-zone analysis of 3D steel frames using beam elements , 1999 .

[19]  Jean-Marc Battini,et al.  Plastic instability of beam structures using co-rotational elements , 2002 .