The method of variably scaled radial kernels for solving two-dimensional magnetohydrodynamic (MHD) equations using two discretizations: The Crank-Nicolson scheme and the method of lines (MOL)

Abstract MHD equations have many applications in physics and engineering. The model is coupled equations in velocity and magnetic field and has a parameter namely Hartmann. The value of Hartmann number plays an important role in the equations. When this parameter increases, using different meshless methods makes the oscillations in velocity near the boundary layers in the region of the problem. In the present paper a numerical meshless method based on radial basis functions (RBFs) is provided to solve MHD equations. For approximating the spatial variable, a new approach which is introduced by Bozzini et al. (2015) is applied. The method will be used here is based on the interpolation with variably scaled kernels. The methodology of the new technique is defining the scale function c on the domain Ω ⊂ R d . Then the interpolation problem from the data locations x j ∈ R d transforms to the new interpolation problem in the data locations ( x j , c ( x j ) ) ∈ R d + 1 (Bozzini et al., 2015). The radial kernels used in the current work are Multiquadrics (MQ), Inverse Quadric (IQ) and Wendland’s function. Of course the latter one is based on compactly supported functions. To discretize the time variable, two techniques are applied. One of them is the Crank–Nicolson scheme and another one is based on MOL. The numerical simulations have been carried out on the square and elliptical ducts and the obtained numerical results show the ability of the new method for solving this problem. Also in appendix, we provide a computational algorithm for implementing the new technique in MATLAB software.

[1]  M. Tezer-Sezgin,et al.  A direct BEM solution to MHD flow in electrodynamically coupled rectangular channels , 2012 .

[2]  Scott A. Sarra,et al.  Adaptive radial basis function methods for time dependent partial differential equations , 2005 .

[3]  Lawrence F. Shampine,et al.  Solving ODEs with MATLAB , 2002 .

[4]  M. Tezer-Sezgin,et al.  Solution of magnetohydrodynamic flow problems using the boundary element method , 2006 .

[5]  Magnetohydrodynamic flow in electrodynamically coupled rectangular ducts , 1988 .

[6]  E. D. Skouras,et al.  An accurate, stable and efficient domain-type meshless method for the solution of MHD flow problems , 2009, J. Comput. Phys..

[7]  Yang Shiyou,et al.  The application of interpolating MLS approximations to the analysis of MHD flows , 2003 .

[8]  Song-Ping Zhu,et al.  The dual reciprocity boundary element method for magnetohydrodynamic channel flows , 2002 .

[9]  P. Lorrain,et al.  Magneto-Fluid Dynamics , 2006 .

[10]  Yan Li,et al.  An exponential compact difference scheme for solving 2D steady magnetohydrodynamic (MHD) duct flow problems , 2012, J. Comput. Phys..

[11]  S. Ravindran Linear feedback control and approximation for a system governed by unsteady MHD equations , 2008 .

[12]  Martin D. Buhmann,et al.  Radial Basis Functions , 2021, Encyclopedia of Mathematical Geosciences.

[13]  Koulis Pericleous,et al.  The numerical modelling of DC electromagnetic pump and brake flow , 1995 .

[14]  The boundary element solution of the magnetohydrodynamic flow in an infinite region , 2009 .

[15]  Z. Demendy,et al.  A new algorithm for solution of equations of MHD channel flows at moderate Hartmann numbers , 1997 .

[16]  P. Smith Some asymptotic extremum principles for magnetohydrodynamic pipe flow , 1971 .

[17]  Gregory E. Fasshauer,et al.  Meshfree Approximation Methods with Matlab , 2007, Interdisciplinary Mathematical Sciences.

[18]  Richard R. Gold,et al.  Magnetohydrodynamic pipe flow. Part 1 , 1962, Journal of Fluid Mechanics.

[19]  J. A. Shercliff The flow of conducting fluids in circular pipes under transverse magnetic fields , 1956, Journal of Fluid Mechanics.

[20]  C. Bozkaya,et al.  Boundary element solution of unsteady magnetohydrodynamic duct flow with differential quadrature time integration scheme , 2006 .

[21]  Jungho Yoon,et al.  Spectral Approximation Orders of Radial Basis Function Interpolation on the Sobolev Space , 2001, SIAM J. Math. Anal..

[22]  M. Tezer-Sezgin,et al.  Boundary element method solution of magnetohydrodynamic flow in a rectangular duct with conducting walls parallel to applied magnetic field , 2008 .

[23]  Yinnian He,et al.  Decoupled schemes for unsteady MHD equations II: Finite element spatial discretization and numerical implementation , 2015, Comput. Math. Appl..

[24]  V. Thevendran Minimum weight design of a spherical shell under a concentrated load at the apex , 1982 .

[25]  M. Dehghan,et al.  The boundary elements method for magneto-hydrodynamic (MHD) channel flows at high Hartmann numbers , 2013 .

[26]  G. Nikiforidis,et al.  Localized meshless point collocation method for time-dependent magnetohydrodynamics flow through pipes under a variety of wall conductivity conditions , 2011 .

[27]  Suizheng Qiu,et al.  Local radial point interpolation method for the fully developed magnetohydrodynamic flow , 2011, Appl. Math. Comput..

[28]  Manuel Kindelan,et al.  RBF-FD formulas and convergence properties , 2010, J. Comput. Phys..

[29]  Mehdi Dehghan,et al.  A meshless based numerical technique for traveling solitary wave solution of Boussinesq equation , 2012 .

[30]  Luca Vincenzo Ballestra,et al.  Computing the survival probability density function in jump-diffusion models: A new approach based on radial basis functions , 2011 .

[31]  Po-Wen Hsieh,et al.  Two new upwind difference schemes for a coupled system of convection-diffusion equations arising from the steady MHD duct flow problems , 2010, J. Comput. Phys..

[32]  Fatemeh Ghasemi,et al.  The Galerkin boundary node method for magneto-hydrodynamic (MHD) equation , 2014, J. Comput. Phys..

[33]  J. A. Shercliff La Mécanique des Fluides et la Magnktohydrodynamique. Paris: Eyrolles, 1962. 168 pp. 25.00 NF. , 1962 .

[34]  Weiwei Sun,et al.  Stability and Convergence of the Crank-Nicolson/Adams-Bashforth scheme for the Time-Dependent Navier-Stokes Equations , 2007, SIAM J. Numer. Anal..

[35]  M. Dehghan,et al.  Meshless Local Petrov--Galerkin (MLPG) method for the unsteady magnetohydrodynamic (MHD) flow through pipe with arbitrary wall conductivity , 2009 .

[36]  Eric Ronald Priest,et al.  Magnetic Reconnection: MHD Theory and Applications , 2000 .

[37]  Scott A. Sarra,et al.  A random variable shape parameter strategy for radial basis function approximation methods , 2009 .

[38]  K. Barrett Duct flow with a transverse magnetic field at high Hartmann numbers , 2001 .

[39]  Valdis Bojarevics,et al.  Comparison of MHD models for aluminium reduction cells , 2006 .

[40]  M. Dehghan,et al.  A finite volume spectral element method for solving magnetohydrodynamic (MHD) equations , 2011 .

[41]  Gregory E. Fasshauer,et al.  On choosing “optimal” shape parameters for RBF approximation , 2007, Numerical Algorithms.

[42]  Boundary element method solution of MHD flow in a rectangular duct , 1994 .

[43]  Lawrence F. Shampine,et al.  The MATLAB ODE Suite , 1997, SIAM J. Sci. Comput..

[44]  Bani Singh,et al.  Finite element method in magnetohydrodynamic channel flow problems , 1982 .

[45]  I. J. Schoenberg Metric spaces and completely monotone functions , 1938 .

[46]  Panagiotis Chatzipantelidis,et al.  A finite volume method based on the Crouzeix–Raviart element for elliptic PDE's in two dimensions , 1999, Numerische Mathematik.

[47]  E. J. Williams,et al.  The induction of electromotive forces in a moving liquid by a magnetic field, and its application to an investigation of the flow of liquids , 1930 .

[49]  Luca Vincenzo Ballestra,et al.  A radial basis function approach to compute the first-passage probability density function in two-dimensional jump-diffusion models for financial and other applications , 2012 .

[50]  B. Fornberg,et al.  Some observations regarding interpolants in the limit of flat radial basis functions , 2003 .

[51]  Andrew Corrigan,et al.  Kernel-Based Meshless Methods , 2009 .

[52]  G. Su,et al.  Upwinding meshfree point collocation method for steady MHD flow with arbitrary orientation of applied magnetic field at high Hartmann numbers , 2011 .

[53]  S. Malang,et al.  Crucial issues on liquid metal blanket design , 1991 .

[54]  Zhiqiang Cai,et al.  On the finite volume element method , 1990 .

[55]  Bengt Fornberg,et al.  Stable calculation of Gaussian-based RBF-FD stencils , 2013, Comput. Math. Appl..

[56]  Yinnian He Unconditional convergence of the Euler semi-implicit scheme for the three-dimensional incompressible MHD equations , 2015 .

[57]  Münevver Tezer-Sezgin,et al.  Fundamental solution for coupled magnetohydrodynamic flow equations , 2007 .

[58]  Mostafa Abbaszadeh,et al.  The use of a meshless technique based on collocation and radial basis functions for solving the time fractional nonlinear Schrödinger equation arising in quantum mechanics , 2013 .

[59]  J. A. Shercliff Steady motion of conducting fluids in pipes under transverse magnetic fields , 1953, Mathematical Proceedings of the Cambridge Philosophical Society.

[60]  H. Takhar,et al.  Unsteady mhd flow and heat transfer on a rotating disk in an ambient fluid , 2002 .

[61]  Mehdi Dehghan,et al.  A numerical method for two-dimensional Schrödinger equation using collocation and radial basis functions , 2007, Comput. Math. Appl..

[62]  M. Tezer-Sezgin,et al.  Finite element method for solving mhd flow in a rectangular duct , 1989 .

[63]  R. L. Hardy Theory and applications of the multiquadric-biharmonic method : 20 years of discovery 1968-1988 , 1990 .

[64]  J. Ramos,et al.  Finite difference and finite element methods for mhd channel flows , 1990 .

[65]  Yinnian He,et al.  Numerical implementation of the Crank–Nicolson/Adams–Bashforth scheme for the time‐dependent Navier–Stokes equations , 2009 .

[66]  W. Habashi,et al.  A finite element method for magnetohydrodynamics , 2001 .

[67]  Bengt Fornberg,et al.  Stabilization of RBF-generated finite difference methods for convective PDEs , 2011, J. Comput. Phys..

[68]  E. Kansa Multiquadrics—A scattered data approximation scheme with applications to computational fluid-dynamics—I surface approximations and partial derivative estimates , 1990 .

[69]  Koulis Pericleous,et al.  The CFD analysis of simple parabolic and elliptic MHD flows , 1994 .

[70]  A. Cheng Multiquadric and its shape parameter—A numerical investigation of error estimate, condition number, and round-off error by arbitrary precision computation , 2012 .

[71]  E. Kansa,et al.  Improved multiquadric method for elliptic partial differential equations via PDE collocation on the boundary , 2002 .

[72]  Shmuel Rippa,et al.  An algorithm for selecting a good value for the parameter c in radial basis function interpolation , 1999, Adv. Comput. Math..

[73]  R. Schaback,et al.  Interpolation with variably scaled kernels , 2015 .

[74]  Mehdi Dehghan,et al.  On the solution of the non-local parabolic partial differential equations via radial basis functions , 2009 .

[75]  Mehdi Dehghan,et al.  Finite difference procedures for solving a problem arising in modeling and design of certain optoelectronic devices , 2006, Math. Comput. Simul..

[76]  Syed Tauseef Mohyud-Din,et al.  A meshless numerical solution of the family of generalized fifth‐order Korteweg‐de Vries equations , 2010 .

[77]  Jie Ouyang,et al.  The variational multiscale element free Galerkin method for MHD flows at high Hartmann numbers , 2013, Comput. Phys. Commun..

[78]  M. Dehghan,et al.  A meshfree weak-strong (MWS) form method for the unsteady magnetohydrodynamic (MHD) flow in pipe with arbitrary wall conductivity , 2013 .

[79]  J. H. Horlock Axial Flow Fans. By R. A. W ALLIS . London: George Newnes, 1961. 361 pp. 50 s . , 1962 .

[80]  Thomas S. Lundgren,et al.  Duct flow in magnetohydrodynamics , 1961 .

[81]  J. C. R. Hunt,et al.  Magnetohydrodynamic flow in rectangular ducts , 1965, Journal of Fluid Mechanics.

[82]  Mehdi Dehghan,et al.  A Legendre spectral element method on a large spatial domain to solve the predator–prey system modeling interacting populations , 2013 .

[83]  Bengt Fornberg,et al.  Scattered node compact finite difference-type formulas generated from radial basis functions , 2006, J. Comput. Phys..

[84]  Zhiqiang Cai,et al.  The finite volume element method for diffusion equations on general triangulations , 1991 .

[85]  M. Tezer-Sezgin,et al.  The finite element method for MHD flow at high Hartmann numbers , 2005 .

[86]  Mehdi Dehghan,et al.  Meshless local boundary integral equation (LBIE) method for the unsteady magnetohydrodynamic (MHD) flow in rectangular and circular pipes , 2009, Comput. Phys. Commun..

[87]  K. Pericleous,et al.  Thermoelectric MHD in dendritic solidification , 2009 .

[88]  Mehdi Dehghan,et al.  The numerical solution of Fokker–Planck equation with radial basis functions (RBFs) based on the meshless technique of Kansa׳s approach and Galerkin method , 2014 .

[89]  Gui-Rong Liu,et al.  An Introduction to Meshfree Methods and Their Programming , 2005 .